Conversion of electric energy — exercise No. 3 1

Wave equations of electromagnetic field

The electromagnetic field is a physical field that is produced by electrically charged
objects and which affects the behavior of charged objects in the vicinity of the field. The
electromagnetic field extends indefinitely throughout space and describes the electromagnetic
interaction, one of the four fundamental forces of nature. The field can be viewed as the
combination of an electric field and a magnetic field. The electric field is produced by stationary
charges, and the magnetic field by moving charges (currents); these two are often described as the
sources of the field. Electric component is characterized by electric field intensity E, magnetic
component is normally expressed by magnetic field intensity H. Vectors of these fields are on
each other perpendicular.

Note: magnetic field is usually denoted by the symbol B. Historically; B was called the
magnetic flux density or magnetic induction. A distinct quantity, H, was called the magnetic
field (strength), and this terminology is still often used to distinguish the two in the context of
magnetic materials (non-trivial permeability m. Otherwise, however, this distinction is often
ignored, and both quantities are frequently referred to as "the magnetic field." (Some authors call
the auxiliary field, instead.)

Maxwell's equations — are a set of four partia differential equations of electromagnetic
theory that express (1) how e ectric currents and changing electric fields produce magnetic fields
(Ampere's Circuital Law), (2) how changing magnetic fields produce eectric fields (Faraday's
law of induction), (3) how electric charges produce electric fields (Gausss law), and (4) the
experimental absence of magnetic monopoles. For fixed surrounding — space filled with material
that is homogenous, isotropic and linear, there are these equations stated in following order and
form:

rotH:J+E:g><E+e><E D
it it
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i it
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These four Maxwell's equations are often completed with material’s equations that
express surrounding influence to effects in electromagnetic field. For fixed surrounding (see
above), they are defined as:

J=g°E D=eE B=nm>H 5)
where ¢ is electric conductivity [S.m™]
e is permitivity [F.m™]

m |s permeability [H.m™]

If in electromagnetic field is any free electric charge, thenro= 0 and also
divD=0 (6)

In respect to modeling of eectric heating it is useful substitute Maxwell’s equations (1)
and (2) with that type of equations, in which will be only one component of electromagnetic
intensity, i.e. either electric E or magnetic H. This type of equations is named general equations
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of electromagnetic wave propagation (in next EMW) or wave equations of electromagnetic field
(in next EMF). Together with unicity conditions they create mathematical model of EMF
propagated in space, therefore model of EMW. Transformation of Maxwell’s equations to wave
equations is simple; procedure for magnetic component of EMF is indicated below:

At first; on 1. Maxwell’s equation (1) we apply another rotation:

rot(rot H ) = rot(g xE ) + rotge Mg @)
e ftg

Introducing one simplification, that material quantities are constants, we can take them in front of
expression:

rot(rot H) =g xot(E) +e wotngQ (8)
eftg

Substituting of 2. Maxwell’ s equation (2) to expression (8) we get:

rot(rot H)=-g S LU ><m><M

it fit>
In next computation will be utilized mathematic operator nabla N, which for
vector operationsisin form:

N —1>q +1><J +1>ek

X X X
for gradient of scalar function f:

grad f =Nf —1111—f>1 +ﬂ><1 +ﬂ
X

™
N(f>g) =fxNg)+g{Nf) (formulation similar to 1. derivation of product)

for divergence of vector function v(x,y,z)=v, % +v, xj +v, X
v, v Ty,

X +

> Ty 1z
for rotation (curl) of vector function v(x,y, z)=v, % +v, xj +v, %

divv=Nx =

¢i kU
é a
MO g S0 o MO, f1 T 1
gﬂy 1zg efz WXg gﬂx v o éix Ty Tzu
&% vy VoH
Note: The rotation at a point is proportional to the on-axis torque atiny pinwheel would fed if it
were centered at that point.
and also Laplacian, the mathematic operator D:
a1 T
D=NxXN=N?=—"+—+—
Ix 9qx 9%
Second derivatives of vector functions after applying operator nabla:
div(gradf)— N >(Nf)
rot(grad f)=R" (Nf)
Df =N
grad(div v) = N(N »)
div(rot v)=N»N" v)

roov=N"v=



Conversion of electric energy — exercise No. 3 3

~

rot(rot v)=R" (N v)
Dv =N?v
Some properties of vector functions:
rot(grad f) =N~ (Nf)=0
div(rotv)=N>N" v=0
NN f

div(grad f)= =N?f = Df
N° N v=R(N»)- N2y
usv=v:u
N>vi v>N
Using operator nabla N will be next calculation as follows (continuation of equation (9)):
N (R~ H)—-g><m><m e><m><M (10)
it qIt?
N(Ri xH )- RIH =- gxma- e><mﬂ|;| (11)
it it
2
grad(div H)- N?H —-gwnx%—il ewnx%TH (12)
Utilizing of 4. Maxwell’s equation (4) div B =0, thereforealso div H =0, we get:
grad(0)- NH—-g»mxm e><m‘"|;| (13)
it it
2
- N H—-g><m><m e><m><M (14
it qt
2
N?H - gwnx%—l;l exqu"TH 0 (15)

what is wave equation for magnetic component of EMF intensity. By similar procedure, i.e.
applying another rotation on 2. Maxwell’ s equation (2), we obtain analogical wave equation for
electric component of EMF intensity, hence:

NZE - g><m><E ewan 0 (16)
1t qt?

Equations (15) and (16) create system of general equations of EMW propagation. Their
universality result from that fact, that they are valid for any electrical surrounding (conductive or
non-conductive) and for any time flow of EMF variables E and H. Considering our next utilizing,
we customize them in time-harmonic form of both components, therefore time vectors E and H
will be expressed by rotating phasors in complex plane. Since

E:Em )ej’W*; 11-[5 J)VVXE )eJ’VV* — JWXE
2
1]"t|25 =-w?xE ™ =-w?xE (17
similarly
ﬂ:Hm@jm; m:jx/\/meij*:jXNXﬂ;

qt
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1°H
t?
By utilizing of expressions (17) and (18) the equations (15) and (16) will be in more
particular content and after modification will bein form:
NZH +(w?sexm- jowsgxm)xH =N2H +k’H =0 (19)
N2§+(w2>e><m- j>w>g><m)><§:|§|2§+k2§:0 (20)
They are wave equations of harmonic EMF; they express the propagation of magnetic
and electric component of the same harmonic EMW in electrically arbitrary surrounding. Electric

properties of surrounding and angular speed, that are in the same two-component of both
equations, are expressed by propagation constant of wave, eventually wave number k; i.e.:

=-w?xH ™ =-w’xH (18)

k2 =w2sexm- jxwogxm=- jxwxmy{g + jxwoe) (21)
therefore in complex plane it hasreal component and imaginary component
k=y- jowxm{g+j>wxe)=a- j* [radm?] (22)

Both components, real and positive, will be enumerated by substituting (22) to (21). After
arrangement we get:

é 2
a=wx| o+ 1+E9 2 ¢ [rad.m™] (23)
2 8 ew e g H
me € eg &U .
b=wx | 28 14+ 14829 2 [rad.m] (24)
2 8 ew e g H

Component a is named phase constant and component b is named attenuation constant.

At last we modify the constants (22) till (24) for electrically specific surrounding and by
them also wave equations of harmonic EMF (19) and (20). We utilize well-known relations
between physical constants:

Cg = 1 : ve = 1 = Cg : | :l

m, >, mxe me, f

in sequence for EMW velocity in vacuum, for EMW in surrounding with permeability m and
permitivity e and for wavelength | .
After modification we get:

for electrically non-conductive surrounding, i.e. g = 0:

(25)

w
k? =w? xme; k=w m>e:wx\/m)><m>eo>er:v;

a :wa/mge {1+1) =w x/mxe = k:%
b =wx 722 {1-1) =0 (26)

Corresponding wave equations for non-conductive surrounding are:
N?H +w?xmexH =N?H +a?H =0
N?E +w? xme xE =N?E +a 2E =0 (27)
From transformed expressions in system (27) results:
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In ideal non-conductive surrounding the electromagnetic wave is not attenuated (b = 0),
propagation constant k is reduced to phase constant a, therefore it is real number. Propagation
velocity and wave length of EMW in non-conductive surrounding are

V:—l :ﬂ; | :l:_sz (28)
mxe a f a

therefore they are dependent on frequency of wave source and on physical properties of

surrounding (mae).

for electrically conductive surrounding, i.e. g> 0, g>> w xe
K? =-jow>gxm; k=, ] xJW>g>¢n:1_TZJ&/W>g>¢n:1'—J
a

a:WX\/m>e><g = W>g><m:1
2 wx 2 a

b=wx/ €% 9 —5=1 (29)
2 wx a

Corresponding wave equations for conductive surrounding are:
N?H - j>w>gxmxH =0
NZE - jow>g>mxE =0 (30)
In conductive surrounding the propagation constant of wave k is complex number, phase

constant a and attenuation constant b are equal. Physically it means, that conductive surrounding
always attenuate the electromagnetic wave. Rate of attenuationis

a= |2 [m] (31)
W g XM

which is obtained by modification of constants (29) and which is named the equivalent
penetration depth of EMW. Generally it provide the representation of surrounding influence (g
and n) and source frequency of EMF to its arrangement in objective conductive surrounding.
Propagation velocity and wave length of EMW in this surrounding are also functions of
penetration depth, because

v
f
When is smaller penetration depth of EMW into conductive surrounding, then its velocity

and wave length is smaller. Physically, the penetration depth corresponds to distance from body
surface, in which the plane electromagnetic wave is attenuated in 95 % of intensity on surface.

v:gzwxa:@prm; | =— =2 xa (32
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Example 1

Determine the penetration depth of electromagnetic wave into copper at frequencies
50Hz, 500Hz, 10kHz, 100kHz, 1 MHz al0MHz. Electric conductivity of copper is
6,43.10" S/m, relaive permesbility is equals to 1. What is the resistance of circular solid
conductor with diameter 2 mm at these frequencies in comparison to its resistance flowed by
direct current?
Solution:
For penetration depth is valid expression:

a:J 2 \/ 2 \/ 1 00628
wog>xm | 2p xfrgxmxm | p xfgdxp 407 xm 2>1o 1/gxto? f Jf

After substituting particular frequencies we get these results:

Frequency [kHZ] 0,05 0,5 10 100 1000 10000

Penetration depth [mm] 8,87 2,81 0,628 0,198 0,0628 0,0198

For comparison of resistance in specific and zero frequency we start from the physical
meaning of penetration depth for plane conductor. In consequence of skin-effect the conductor
behaves quasi the current flows by uniformly distributed current density in the layer of
penetration depth a. We can it apply on cylindrical conductor only in case, that penetration depth
issignificantly smaller asits radius. According to previous table it can be approximately satisfied
at frequency 100 kHz. For higher frequencies it is valid more precisely, if there is higher
frequency. Proportion of resistances will be equal to reciprocal proportion of cross-section areas,
in that is flowed uniformly distributed current

RSOO _ T
R S 2>1o><r><a 2xa

Values of this proportion introduces next table, for frequency 100 kHz is necessary this
value regard only as rough calculation, because condition r >> a isnot satisfied, r = 5a.

Frequency [kHZ] 100 1000 10000
RIRy 2,5 8 25

Previous formulafor resistance proportion calculates area of ring approximately so, that it
isspread in form of strip and it supposes, that it creates rectangular. In fact, it is rhomboid. Exact
areaof ring is defined in following manner:

S=pAr2- (r- aff|=pAr*- (?- 2% xa+a?)|=p {r?- 12 +2xa- a?)=2xp x xa- p x> @
@2>p rra

Last expression is valid for r xa<<a?, i.e. r << a. Calculation with exact cross-section
area is naturally useless, because for radius, that is comparable to penetration depth, there is not

satisfied initial condition, that current is flowed with uniformly distributed current density only in
layer of penetration depth a.
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Example 2

Two transmitting antennas in remote distance 50 km transmit in the same time signal.
Surrounding between particular transmitters is air. Frequency of EM radiation of the first
transmitter is 900 MHz, the second one 1800 MHz. Radiant magnitude value of electrical
component of the first transmitter is 3 V/m, the second one 1 V/m. Determine the propagation
constants, phase constants, attenuation constants, wave lengths, propagation velocities,
penetration depths of particular EM waves and immediate value of electric field intensity in time
of wave interference, immediate value of electric field intensity in time t = 10° s, number of
periods of particular wavesin time of wave interference.
Solution:

E [V/m]

3
2

] _valmis]
-1

TI\M Bls]
2 m-é]\/ agm]
-3

Propagation constant:

k, :WIW:Zm Xfl"\/rﬂn’m ) €,

k, = 2> »900x0° x\/4>p X0’ %>8,854X0 ¥ ¥ =18,862 rad>m™*
k, =w, x/mee = 2>p xf, x/m xm e, e,

k, = 2>p \800x0° x\/4>p X0 7 %>8,854X0 ¥ ¥ =37,725radxm*

Phase constant and attenuation constant:
As there deals about non-conductive surrounding, in which surrounding conductivity g= 0, then:

a, =k, =18862rad>n™*; b, =0
a,=k,=37,725rad>m*; b,=0

Length of period of particular waves:

T, =1 :% =111140° s
f, 900x0
) =t. 1 ~=555540"s
f, 1800X0

Propagation velocity of particular waves:

=t =Wt L = ¢, =2,99840° ms’!
Jme a, mpmpoee |4 072188544021
v, =t =V 1 ! =, =2,9984.0° m>s:

Jme a, Jmomoee \[ap 1072088544022
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Wave length:
\ w, _2p

-1
fl alel a,

Voo Wo _2P _ 5998408 %555540°° = 0167 m
f, a,xf, a,

=2,998x0°,11140° =0,333m

Penetration depth of particular waves at specific frequencies:
As attenuation constant of both waves in non-conductive surrounding is equals to zero, wave is
not attenuated:

_ 2 2 2
a = = 5 —— =lim,[—==¥m
w,Xgxm | 2> >X900:0° X044 A0 " A 0
_ 2 _ 2 e 2
a, = = 5 —— =lim,/[==¥m
w,>gxXm | 2>p x800:0° x0>4> 40 * A 0
Time, when there happens the wave interference:

s _ 5040°
v, +v, 2998X0°+2,99840°

t

LSt = =8,339:0°s

Immediate value of electric field intensity in time of wave interference (precision of these results
isin considerable rate dependent on previous rounding):

E,(t) = By 28iN(W, 2, ) = By 58iN(25p xF, %, )= 356in(25p X00040° 58,339%0°°) = - 1,955V xm
E, () = Eppae *SINW, %, ) = B,y 6in(25p xf, %, ) = 1>sin(2>p 1800x10° %8,339%0°° )= - 0,989 V >m

Immediate value of electric field intensity in time of t, = 10° s;
E,(t,) = E, . *sin(25p xf, 5, ) = 356in(25p 000X10° ¥0°°) = - 2,896 V xm'*
E,(t,) = E,p >sin(25p xf, %, ) = 1sin(2>p 4800x10° 40°¢) = 0,504 V »m'*

Number of periods of particular waves in time of wave interference:

-5
n = Ying = % = 75059 or n = 3 25000 =75075 (rounding error)
T, 111140 |, 0,333
-5
n, = Ging = 833940 =150117 or n = S @ =149701 (rounding error)

T, 555540" |, 0167



