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Wave equations of electromagnetic field 
 

The electromagnetic field is a physical field that is produced by electrically charged 
objects and which affects the behavior of charged objects in the vicinity of the field. The 
electromagnetic field extends indefinitely throughout space and describes the electromagnetic 
interaction, one of the four fundamental forces of nature. The field can be viewed as the 
combination of an electric field and a magnetic field. The electric field is produced by stationary 
charges, and the magnetic field by moving charges (currents); these two are often described as the 
sources of the field. Electric component is characterized by electric field intensity E, magnetic 
component is normally expressed by magnetic field intensity H. Vectors of these fields are on 
each other perpendicular. 

Note: magnetic field is usually denoted by the symbol B. Historically; B was called the 
magnetic flux density or magnetic induction. A distinct quantity, H, was called the magnetic 
field (strength), and this terminology is still often used to distinguish the two in the context of 
magnetic materials (non-trivial permeability µ). Otherwise, however, this distinction is often 
ignored, and both quantities are frequently referred to as "the magnetic field." (Some authors call 
the auxiliary field, instead.) 

Maxwell's equations – are a set of four partial differential equations of electromagnetic 
theory that express (1) how electric currents and changing electric fields produce magnetic fields 
(Ampère's Circuital Law), (2) how changing magnetic fields produce electric fields (Faraday's 
law of induction), (3) how electric charges produce electric fields (Gauss's law), and (4) the 
experimental absence of magnetic monopoles. For fixed surrounding – space filled with material 
that is homogenous, isotropic and linear, there are these equations stated in following order and 
form: 
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0div ρ=D        (3) 
 0div =B        (4) 
 

These four Maxwell's equations are often completed with material’s equations that 
express surrounding influence to effects in electromagnetic field. For fixed surrounding (see 
above), they are defined as: 

EJ ⋅= γ   ED ⋅= ε   HB ⋅= µ     (5) 
where γ is electric conductivity [S.m-1] 
 ε is permitivity [F.m-1] 

µ Is permeability [H.m-1] 
 

If in electromagnetic field is any free electric charge, then ρ0 = 0 and also 
0div =D           (6) 

 
In respect to modeling of electric heating it is useful substitute Maxwell’s equations (1) 

and (2) with that type of equations, in which will be only one component of electromagnetic 
intensity, i.e. either electric E or magnetic H. This type of equations is named general equations 
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of electromagnetic wave propagation (in next EMW) or wave equations of electromagnetic field 
(in next EMF). Together with unicity conditions they create mathematical model of EMF 
propagated in space, therefore model of EMW. Transformation of Maxwell’s equations to wave 
equations is simple; procedure for magnetic component of EMF is indicated below: 
At first; on 1. Maxwell’s equation (1) we apply another rotation: 
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Introducing one simplification, that material quantities are constants, we can take them in front of 
expression: 
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Substituting of 2. Maxwell’s equation (2) to expression (8) we get: 
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In next computation will be utilized mathematic operator nabla ∇, which for 
vector operations is in form: 
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for gradient of scalar function f: 
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( ) ( ) ( )fggfgf ∇⋅+∇⋅=⋅∇  (formulation similar to 1. derivation of product) 
for divergence of vector function ( ) kjiv ⋅+⋅+⋅= zyx vvvzyx ,, : 
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for rotation (curl) of vector function ( ) kjiv ⋅+⋅+⋅= zyx vvvzyx ,, : 
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Note: The rotation at a point is proportional to the on-axis torque a tiny pinwheel would feel if it 
were centered at that point. 
and also Laplacian, the mathematic operator ∆: 
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Second derivatives of vector functions after applying operator nabla: 
( ) ( )ffgraddiv ∇⋅∇=  
( ) ( )ffgradrot ∇×∇=  

 ff 2∇=∆  
 ( ) ( )vv ⋅∇∇=divgrad  
 ( ) ( )vv ×∇⋅∇=rotdiv  
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 ( ) ( )vv ×∇×∇=rotrot  
 vv 2∇=∆  
Some properties of vector functions: 
 ( ) ( ) 0ffgradrot =∇×∇=  
 ( ) 0rotdiv =×∇⋅∇= vv  
 ( ) ( ) ffffgraddiv 2 ∆=∇=∇⋅∇=  
 ( ) vvv 2∇−⋅∇∇=×∇×∇  
 uvvu ⋅=⋅  
 ∇⋅≠⋅∇ vv  
Using operator nabla ∇ will be next calculation as follows (continuation of equation (9)): 
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Utilizing of 4. Maxwell’s equation (4) 0div =B , therefore also 0div =H , we get: 
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what is wave equation for magnetic component of EMF intensity. By similar procedure, i.e. 
applying another rotation on 2. Maxwell’s equation (2), we obtain analogical wave equation for 
electric component of EMF intensity, hence: 
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Equations (15) and (16) create system of general equations of EMW propagation. Their 
universality result from that fact, that they are valid for any electrical surrounding (conductive or 
non-conductive) and for any time flow of EMF variables E and H. Considering our next utilizing, 
we customize them in time-harmonic form of both components, therefore time vectors E and H 
will be expressed by rotating phasors in complex plane. Since 
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By utilizing of expressions (17) and (18) the equations (15) and (16) will be in more 
particular content and after modification will be in form: 

( ) 02222 =+∇=⋅⋅⋅⋅−⋅⋅+∇ HHHH kj µγωµεω     (19) 
( ) 02222 =+∇=⋅⋅⋅⋅−⋅⋅+∇ EEEE kj µγωµεω     (20) 

They are wave equations of harmonic EMF; they express the propagation of magnetic 
and electric component of the same harmonic EMW in electrically arbitrary surrounding. Electric 
properties of surrounding and angular speed, that are in the same two-component of both 
equations, are expressed by propagation constant of wave, eventually wave number k, i.e.: 

( )εωγµωµγωµεω ⋅⋅+⋅⋅⋅−=⋅⋅⋅−⋅⋅= jjj22k      (21) 
therefore in complex plane it has real component and imaginary component 

( ) βαεωγµω ⋅−=⋅⋅+⋅⋅⋅−= jjjk  [rad.m-1]    (22) 
Both components, real and positive, will be enumerated by substituting (22) to (21). After 
arrangement we get: 
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Component α is named phase constant and component β is named attenuation constant. 
At last we modify the constants (22) till (24) for electrically specific surrounding and by 

them also wave equations of harmonic EMF (19) and (20). We utilize well-known relations 
between physical constants: 
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in sequence for EMW velocity in vacuum, for EMW in surrounding with permeability µ and 
permitivity ε and for wave length λ. 
After modification we get: 

• for electrically non-conductive surrounding, i.e. γ  = 0: 
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Corresponding wave equations for non-conductive surrounding are: 
02222 =+∇=⋅⋅⋅+∇ HHHH αεµω  

02222 =+∇=⋅⋅⋅+∇ EEE αεµω E       (27) 
From transformed expressions in system (27) results: 
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In ideal non-conductive surrounding the electromagnetic wave is not attenuated (β = 0), 
propagation constant k is reduced to phase constant α, therefore it is real number. Propagation 
velocity and wave length of EMW in non-conductive surrounding are 
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therefore they are dependent on frequency of wave source and on physical properties of 
surrounding (µ a ε). 

• for electrically conductive surrounding, i.e. γ > 0, γ >> ω ⋅ ε 
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Corresponding wave equations for conductive surrounding are: 
02 =⋅⋅⋅⋅−∇ HH µγωj  

02 =⋅⋅⋅⋅−∇ EE µγωj         (30) 
In conductive surrounding the propagation constant of wave k is complex number, phase 

constant α and attenuation constant β are equal. Physically it means, that conductive surrounding 
always attenuate the electromagnetic wave. Rate of attenuation is 

 
µγω ⋅⋅

=
2a   [m]        (31) 

which is obtained by modification of constants (29) and which is named the equivalent 
penetration depth of EMW. Generally it provide the representation of surrounding influence (γ 
and µ) and source frequency of EMF to its arrangement in objective conductive surrounding. 
Propagation velocity and wave length of EMW in this surrounding are also functions of 
penetration depth, because 

afav ⋅⋅⋅=⋅== πω
α
ω 2 ;  a

f
v

⋅⋅== πλ 2     (32) 

When is smaller penetration depth of EMW into conductive surrounding, then its velocity 
and wave length is smaller. Physically, the penetration depth corresponds to distance from body 
surface, in which the plane electromagnetic wave is attenuated in 95 % of intensity on surface. 
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Example 1 
 Determine the penetration depth of electromagnetic wave into copper at frequencies 
50 Hz, 500 Hz, 10 kHz, 100 kHz, 1 MHz a 10 MHz. Electric conductivity of copper is 
6,43.107 S/m, relative permeability is equals to 1. What is the resistance of circular solid 
conductor with diameter 2 mm at these frequencies in comparison to its resistance flowed by 
direct current? 
Solution: 
For penetration depth is valid expression: 
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After substituting particular frequencies we get these results: 
Frequency [kHz] 0,05 0,5 10 100 1000 10000 
Penetration depth [mm] 8,87 2,81 0,628 0,198 0,0628 0,0198 
 

For comparison of resistance in specific and zero frequency we start from the physical 
meaning of penetration depth for plane conductor. In consequence of skin-effect the conductor 
behaves quasi the current flows by uniformly distributed current density in the layer of 
penetration depth a. We can it apply on cylindrical conductor only in case, that penetration depth 
is significantly smaller as its radius. According to previous table it can be approximately satisfied 
at frequency 100 kHz. For higher frequencies it is valid more precisely, if there is higher 
frequency. Proportion of resistances will be equal to reciprocal proportion of cross-section areas, 
in that is flowed uniformly distributed current 
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Values of this proportion introduces next table, for frequency 100 kHz is necessary this 

value regard only as rough calculation, because condition r >> a is not satisfied, r = 5⋅a. 
 

Frequency [kHz] 100 1000 10000 
R/R0 2,5 8 25 

 
Previous formula for resistance proportion calculates area of ring approximately so, that it 

is spread in form of strip and it supposes, that it creates rectangular. In fact, it is rhomboid. Exact 
area of ring is defined in following manner: 

( )[ ] ( )[ ] ( ) ≅⋅−⋅⋅⋅=−⋅⋅+−⋅=+⋅⋅−−⋅=−−⋅= 222222222 222 aaraarrraarrrarrS πππππ
ar ⋅⋅⋅≅ π2  

Last expression is valid for 2aar <<⋅ , i.e. ar << . Calculation with exact cross-section 
area is naturally useless, because for radius, that is comparable to penetration depth, there is not 
satisfied initial condition, that current is flowed with uniformly distributed current density only in 
layer of penetration depth a. 
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Example 2 
 Two transmitting antennas in remote distance 50 km transmit in the same time signal. 
Surrounding between particular transmitters is air. Frequency of EM radiation of the first 
transmitter is 900 MHz, the second one 1800 MHz. Radiant magnitude value of electrical 
component of the first transmitter is 3 V/m, the second one 1 V/m. Determine the propagation 
constants, phase constants, attenuation constants, wave lengths, propagation velocities, 
penetration depths of particular EM waves and immediate value of electric field intensity in time 
of wave interference, immediate value of electric field intensity in time t = 10-6 s, number of 
periods of particular waves in time of wave interference. 
Solution: 

 
 
Propagation constant: 

r0r0111 2 εεµµπεµω ⋅⋅⋅⋅⋅⋅=⋅⋅= fk  
11276

1 mrad862,18110854,81104109002 −−− ⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ππk  

r0r0222 2 εεµµπεµω ⋅⋅⋅⋅⋅⋅=⋅⋅= fk  
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2 mrad725,37110854,811041018002 −−− ⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ππk  
 
Phase constant and attenuation constant: 
As there deals about non-conductive surrounding, in which surrounding conductivity γ = 0, then: 
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Propagation velocity of particular waves: 
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Wave length: 
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Penetration depth of particular waves at specific frequencies: 
As attenuation constant of both waves in non-conductive surrounding is equals to zero, wave is 
not attenuated: 
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Time, when there happens the wave interference: 
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Immediate value of electric field intensity in time of wave interference (precision of these results 
is in considerable rate dependent on previous rounding): 

( ) ( ) ( ) ( ) 156
int1max1int1max1int1 mV955,110339,8109002sin32sinsin −− ⋅−=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅=⋅⋅= ππω tfEtEtE

( ) ( ) ( ) ( ) 156
int2max2int2max2int2 mV989,010339,81018002sin12sinsin −− ⋅−=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅=⋅⋅= ππω tfEtEtE

 
Immediate value of electric field intensity in time of tv = 10-6 s: 

( ) ( ) ( ) 166
v1max1v1 mV896,210109002sin32sin −− ⋅−=⋅⋅⋅⋅⋅=⋅⋅⋅⋅= ππ tfEtE  

( ) ( ) ( ) 166
v2max2v2 mV504,0101018002sin12sin −− ⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅= ππ tfEtE  

 
Number of periods of particular waves in time of wave interference: 
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