Príklad 1

Podľa schémy zapojenia na obr. 1 určte prostredníctvom ATPDraw prúdy prechádzajúce jednotlivými vetvami, ak $R_1 = 1 \Omega$, $L_1 = 0,001$ H, $R_2 = 1,5 \Omega$, $L_2 = 0,002$ H, $R_3 = 2 \Omega$, $L_3 = 0,001$ H, f = 50 Hz, $U_1 = 125 \cdot e^{j90^\circ}$ V, $U_2 = 125$ V.

Obr. 1 Schéma zapojenia

Riešenie:

Daný obvod najprv vyriešime pomocou teórie obvodov (Riešenie I) a následne uskutočníme kontrolu pomocou ATPDraw (*Riešenie II*).

Riešenie I:

V náhradnej schéme obvodu zvolíme smer prúdov v jednotlivých vetvách (I_1 , I_2 , I_3). Zvolíme smer slučiek a podľa tejto schémy napíšeme príslušné napäťové rovnice a jednu podľa 1. Kirchhoffového zákona.

Obr. 2 Náhradná schéma zapojenia

s₁:
$$-\boldsymbol{U}_1 + \boldsymbol{I}_1 \cdot (\boldsymbol{R}_1 + j \cdot \boldsymbol{\omega} \cdot \boldsymbol{L}_1) + \boldsymbol{I}_3 \cdot (\boldsymbol{R}_3 + j \cdot \boldsymbol{\omega} \cdot \boldsymbol{L}_3) = 0$$

s₂: $\boldsymbol{U}_2 - \boldsymbol{I}_3 \cdot (\boldsymbol{R}_3 + j \cdot \boldsymbol{\omega} \cdot \boldsymbol{L}_3) - \boldsymbol{I}_2 \cdot (\boldsymbol{R}_2 + j \cdot \boldsymbol{\omega} \cdot \boldsymbol{L}_2) = 0$
1.kz: $\boldsymbol{I}_1 + \boldsymbol{I}_2 - \boldsymbol{I}_3 = 0$

Zavedieme substitúciu:

$$Z_1 = R_1 + j \cdot \omega \cdot L_1$$

$$Z_2 = R_2 + j \cdot \omega \cdot L_2$$

$$Z_3 = R_3 + j \cdot \omega \cdot L_3$$

Po úprave:

$$I_1 = \frac{U_1 - I_2 \cdot Z_3}{Z_1 + Z_3}$$
$$I_2 = \frac{U_2 \cdot (Z_1 + Z_3) - U_1 \cdot Z_3}{Z_1 \cdot (Z_2 + Z_3) + Z_2 \cdot Z_3}$$
$$I_3 = I_1 + I_2$$

a dosadení hodnôt získavame:

$$I_1 = -14,0775 + j \cdot 75,1352 = 76,44 \cdot e^{j \cdot 100,6^\circ} \text{ A}$$
$$I_2 = 36,6258 - j \cdot 51,5334 = 63,23 \cdot e^{-j \cdot 54,6^\circ} \text{ A}$$
$$I_3 = 22,5483 + j \cdot 23,6018 = 32,64 \cdot e^{j \cdot 46,3^\circ} \text{ A}$$

Z čoho vyplýva, že jednotlivé priebehy prúdov dosiahnu svoje maximá v čase:

$$t = \left(T - \frac{T}{360^{\circ}} \cdot \varphi\right) + n \cdot T = \left(\frac{1}{f} - \frac{\varphi}{360^{\circ} \cdot f}\right) + \frac{n}{f} \qquad [s]$$

kde $n = 0, 1, \dots$ je počet periód

Pre n = 0 dostávame:

$$t_{1} = \left(\frac{1}{f} - \frac{\varphi_{1}}{360^{\circ} \cdot f}\right) + \frac{n}{f} = \left(\frac{1}{50} - \frac{100,6^{\circ}}{360^{\circ} \cdot 50}\right) + \frac{0}{50} \approx 0,0144 \text{ s}$$

$$t_{2} = \left(\frac{1}{f} - \frac{\varphi_{2}}{360^{\circ} \cdot f}\right) + \frac{n}{f} = \left(\frac{1}{50} - \frac{-54,6^{\circ}}{360^{\circ} \cdot 50}\right) + \frac{0}{50} \approx 0,023 \text{ s}$$

$$t_{3} = \left(\frac{1}{f} - \frac{\varphi_{3}}{360^{\circ} \cdot f}\right) + \frac{n}{f} = \left(\frac{1}{50} - \frac{46,3^{\circ}}{360^{\circ} \cdot 50}\right) + \frac{0}{50} \approx 0,0174 \text{ s}$$

Riešenie II:

V ATPDraw sa vytvorí schéma zapojenia podľa obr. 3. Je nutné dodržať smer toku danej veličiny (v našom prípade prúdu) a to otočením prvku v smere čítania textu na tomto prvku (viď. RLC2, ktorý je otočený tak, že smer toku prúdu je v smere čítania textu RLC na tomto prvku). Tento smer prúdu sme zvolili v korešpondencii so schémou na obr. 2, v inom prípade toto otočenie nie je nevyhnutné.

Na napäťovom zdroji U1 nastavíme v položke **Amp** hodnotu 125 a v položke **Tsto** hodnotu 0, čo má za následok stály napäťový zdroj. V **Type of source** ponecháme voľbu **Voltage**. Fázové natočenie zvolíme v položke **Pha** 0 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj) a frekvenciu v položke **f** 50.

Obr. 3 Schéma zapojenia v ATPDraw

Component: Ac1ph.	sup				×
<u>A</u> ttributes					
DATA	VALUE		NODE	PHASE	NAME
Amp.	125		AC	1	××0001
f	50				
Pha	0				
A1	0				
TSta	-1				
TSto	100				
Order: 0				Label: U1	
Co <u>m</u> ment:					
Type of source					_
C Current					∣ Hi <u>d</u> e
C V I					🗖 Lock
 Voltage 					
		01/			1
" <u>"</u>		<u>U</u> K		Lancel	

Obr. 4 Nastavenie parametrov pre napäťový zdroj U1

Podobne postupujeme aj pri napäťovom zdroji U2.

Component: Ac1ph.sup					×
Attributes					
ΠΑΤΑ	/ALLIE		DE	DHASE	
Amp. 1	125	AC		1	××0003
f 5	50				
Pha -	90				
A1 0)				
TSta -	1				
TSto 1	100				
Order: 0				Label: U2	
Co <u>m</u> ment:					
Type of source					
C Current					I_ Hi <u>d</u> e
Voltage					🗖 Lock
se volidge					
u+⊘	<u>0</u> K			Cancel	<u>H</u> elp

Obr. 5 Nastavenie parametrov pre napäťový zdroj U2

Vo vlastnostiach prvku RLC1 nastavíme v položke **R** hodnotu 1, **L** hodnotu 1 (predvolené je zadávanie hodnôt v mH). V **Output** nastavíme voľbu **Current** (obr. 6).

Component: RLC.SUP					×
<u>A</u> ttributes					
DATA V	ALUE	- [NODE	PHASE	NAME
R 1		ľ	From	1	∞0001
L 1			То	1	XX0002
C 0					
	_				
Order: U				Label: RLU1	
Comment:					
r Output					— 1134
					I Hige
1 - Current	•				🗖 Lock
					∑ §Vintage,1
-RLC-	<u>o</u> k	C.		Cancel	Help

Obr. 6 Nastavenie parametrov prvku RLC1

Podobne postupujeme aj pri prvkoch RLC2 a RLC3.

Component: Rlc.su	Jp				<u>د</u>
DATA	VALUE		NODE	PHASE	NAME
R	1.5		From	1	××0003
L	2		То	1	××0002
С	0				
, Order: 0			,	Label: BLC2	,
				Laber. Incor	-
Co <u>m</u> ment:					
r Output					
					I Hi <u>d</u> e
1 - Curren	t 💌]			🗖 Lock
					⊈Vintage,1
				1	

Obr. 7 Nastavenie parametrov prvku RLC2

Component: Rlc.sup					X
DATA VA R 2 L 1 C 0	ALUE	NOI Fror To	DE PH n 1 1	IASE	NAME XX0002
Order: 0			Lab	el: RLC3	
Comment: Output 1 - Current	_				☐ Hige ☐ Lock ☐ \$Vintage,1
RLC	<u></u> K		<u>C</u> ano	el	<u>H</u> elp

Obr. 8 Nastavenie parametrov prvku RLC3

Časové podmienky simulácie sa nastavia voľbou z horného menu ATP Settings a Simulation (obr. 9). Keďže sa jedná o striedavý obvod a zaujímajú nás prechodné deje, nastavíme krok výpočtu delta T 1E-7 s a dobu výpočtu, minimálne však aspoň dve periódy (0,04 s), napr. **Tmax** 0,1 s (obr. 10).

	ATP Settings
	Simulation Output Switch/UM Format Record Variables
	delta T: 1E-7 Simulation type Imax: 0.1 ⊙ Time domain ⊠opt: 0 ⊙ Frequency scan Copt: 0 ⊙ Harmonic (HFS)
Make File run ATP	<u>Power Frequency</u>
Edit ATP-file Edit LIS-file	
Make Names	
Edit Commands run ATP Ctrl+Alt+0 run PCPlot Ctrl+Alt+1 run ATP (file) Ctrl+Alt+2 run PlotXY Ctrl+Alt+3	
Obr. 9 ATP – Settings	Obr. 10 Dialógové okno Settings – Simulation

Príkazom Make File v hornom menu ATP sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (obr. 11). Príkazom run ATP v hornom menu ATP sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 12). V prostredí ATPDraw sa voľbou z horného menu ATP run PlotXY spustí grafický postprocesor (obr. 13).

Settings Make File run ATP			Settings Make File run ATP			Settings Make File run ATP	
Edit ATP-file Edit LIS-file			Edit ATP-file Edit LIS-file			Edit ATP-file Edit LIS-file	
Make Names			Make Names			Make Names	
Edit Commands.			Edit Commands.			Edit Commands.	
run ATP	Ctrl+Alt+0		run ATP	Ctrl+Alt+0		run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1		run PCPlot	Ctrl+Alt+1		run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2		run ATP (file)	Ctrl+Alt+2		run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3		run PlotXY	Ctrl+Alt+3		run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4		Edit Text	Ctrl+Alt+4		Edit Text	Ctrl+Alt+4
Obr. 11 ATP	– Make File	(Obr. 12 ATP -	– run ATP	Ċ		– run PlotXY

Obr. 11 ATP – Make File… Obr. 12 ATP – run ATP

A v ňom je s označením c: XX0001–XX0002 uvedený požadovaný priebeh prúdu I_1 , c: XX0003–XX0002 priebeh prúdu I_2 a c: XX0002– priebeh prúdu I_3 . Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla Plot sa následne zobrazia. Poznámka: čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním!

🚰 MC's PlotXY - Data selectio	DN				<u>_ ×</u>
Load Refresh	3			6	?
# File Name	# of vars	# of Poi	ints	s Tmax	
cviko.pl4	4	100000	1	0,1	
Variables		Re	se	t	
t	Variable		X	Factor	Offset
c:XX0003-XX0002	t		x	1	0
c:XX0002-	c:XX0001	-xx000		1	0
	c:XX0003	-xx000		1	0
	c:XX0002	-		1	0
	,	Update	9	P	lot

Obr. 14 Dialógové okno programu PlotXY pre vykreslenie priebehov

V okne PlotXY stlačíme tlačidlo Manual Scale v spodnom menu tlačidiel tohto okna (tretie zl'ava) (obr. 15) a následne v okne Manual Scaling zadáme minimálne a maximálne hranice pre zobrazenie priebehov. Nám postačuje jedna perióda, teda v X-Axis Max nastavíme hodnotu 0,02 (obr. 16) a potvrdíme tlačidlom **OK**.

	Mark Copy Print
Obr. 15 Tlačidlo	Manual Scale

🚰 MC's PlotXY - Manual Scaling	
Y-Axis	Right-Y Axis
Max 80	Max inactive
Min -80	Min inactive
X-Axis	
Min 0	Max 0,02
✓ Exact	Match
Cancel	OK

Obr. 16 Okno Manual Scaling

V okne PlotXY stlačíme tlačidlo Show Cursor v spodnom menu tlačidiel tohto okna (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde. Tu zistíme korešpondujúcu zhodu v amplitúde a fázovom natočení, t.j. čase prechodu veličiny nulou (porov. *Riešenie I*).

Obr. 20 Priebeh prúdu I_1 vo vyššie uvedenom obvode

Yalues	
File cviko.pl4	
8,0335E-03	
-69,401	
63,223	
-6,1784	
□ Interpolation	

Obr. 21 Zobrazenie maximálnej hodnoty prúdu **I**₂

Values
File cviko.pl4
3,0544E-03
31,589
0,42083
32,01
Interpolation

Obr. 22 Zobrazenie času prechodu prúdu I_2 nulou

Values	
File cviko.pl4	
2,4268E-03	
44,613	
-11,972	
32,642	
Interpolation	

Obr. 24 Zobrazenie maximálnej hodnoty prúdu **I**₃

¥alues	
File cviko.pl4	
0,017448	
62,365	
-62,156	
0,20868	
□ Interpolation	

Obr. 25 Zobrazenie času prechodu prúdu I_3 nulou

Obr. 23 Priebeh prúdu I_2 vo vyššie uvedenom obvode

Obr. 26 Priebeh prúdu I_3 vo vyššie uvedenom obvode

Z daných priebehov odčítaných v 1. perióde PlotXY je vidieť, že prúdy prechádzajú nulou v časoch, ktorým zodpovedajú fázové natočenia podľa vzťahu $\varphi = 360^{\circ} - \frac{t}{T} \cdot 360^{\circ}$ (pretože boli odčítané v 1. perióde):

$$t_{1} = 0.01439 \text{ s} \implies \varphi_{1} = 360^{\circ} - \frac{t_{1}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0.01439}{0.02} \cdot 360^{\circ} = 100.98^{\circ} \approx -259.02^{\circ}$$

$$t_{2} = 0.00305 \text{ s} \implies \varphi_{2} = 360^{\circ} - \frac{t_{2}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0.00305}{0.02} \cdot 360^{\circ} = 305.1^{\circ} \approx -54.9^{\circ}$$

$$t_{3} = 0.01745 \text{ s} \implies \varphi_{3} = 360^{\circ} - \frac{t_{3}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0.01745}{0.02} \cdot 360^{\circ} = 45.9^{\circ} \approx -314.4^{\circ}$$

Pri danom rozlíšení (Scaling) je zhoda postačujúca (viď skutočné hodnoty): $I_1 = 76,44 \cdot e^{j \cdot 100,6^\circ}$ A, $I_2 = 63,23 \cdot e^{-j \cdot 54,6^\circ}$ A, $I_3 = 32,64 \cdot e^{j \cdot 46,3^\circ}$ A