Príklad 1

Podľa schémy zapojenia na obr. 1 zistite úbytky napätí na jednotlivých pasívnych prvkoch obvodu (rezistor, cievka, vypínač) a prúd v obvode v čase t = 0,005 s, ak sú dané parametre prvkov obvodu: $R = 10 \Omega$, L = 20 mH a napätie zdroja U = 10 V.

Obr. 1 Schéma zapojenia

Riešenie:

V prostredí grafického preprocesora ATPDraw sa zostaví elektrická schéma podľa obr. 2. Je nutné dodržať smer toku danej veličiny (v našom prípade prúdu) a to otočením prvku v s právnom smere (smer šípky na ampérmetri udáva smer toku danej veličiny). Tento smer prúdu sa zvolil v korešpondencii so schémou na obr. 1, v inom prípade toto otočenie nie je nevyhnutné.

Na napäťovom zdroji U1 sa nastaví v položke **Amp** hodnotu 10 a v položky **Tsta** na hodnotu -1 a **Tsto** na hodnotu 1, čo má za následok stály napäťový zdroj. V položke **Type of source** sa ponechá voľba **Voltage**.

Obr. 2 Schéma zapojenia obvodu v ATPDraw

Napätie 10 V sa zapíše v tabuľke zdroja do položky Amp.

omponent: DC1P Attributes	н			
DATA	VALUE	NODE	PHASE	NAME
UЛ	0	DC	1	××0001
Amp	10			
Tsta	-1			
Tsto	1			
<u>G</u> roup No: 0 Co <u>m</u> ment:			La <u>b</u> el: U	
<u>G</u> roup No: 0 Co <u>m</u> ment:			La <u>b</u> eł: U	□ Hige
<u>G</u> roup No: 0 Co <u>m</u> ment:			La <u>b</u> el: U	☐ Hige ☐ Lock
<u>G</u> roup No: 0 Co <u>m</u> ment:			La <u>b</u> el: U	T Hige

Obr. 3 Nastavenie parametrov pre napäťový zdroj U

Na prúdovej sonde sa potvrdí voľba jednej fázy.

Open Probe		×
Phases 1	⊠ <u>А</u> ⊏ в	OK
03		<u>H</u> elp

Obr. 4 Nastavenie parametrov ampérmetra

Na časovom spínači sa nastaví v **T-cl** hodnota -1 a v **T-op** hodnota 0.02 (ako oddeľovací znak je nutné používať bodku).

Component: SWI1	ICHTC				2
Attributes					
DATA	[VALUE		None	[DULOT	(NUN 100 (
DATA	VALUE		NODE	PHASE	NAME
T-cl	-1		SWF	1	XX0002
T-op	0.02		SWT	1	XX0003
Imar	0				
Crown May 0			·	1	
				La <u>p</u> er: Jo	
Comment:					
					🗖 Hide
C Current	C Voltage	C Curr&Volt	O Po	wer&Energy	Lock
1					
*		<u>0</u> K		<u>C</u> ancel	<u>H</u> elp

Obr. 5 Nastavenie parametrov vypínača

Component: INDUC Attributes	TOR				X
DATA L	VALUE		NODE From To	PHASE 1 1	NAME XX0003 XX0005
Group No: 0				La <u>b</u> el: L	
Output	C ⊻oltage	C Cyrr&Volt	C <u>P</u> ov	ver&Energy	☐ Hige ☐ Lock ☐ \$Vintage,1
		<u>0</u> K		<u>C</u> ancel	<u>H</u> elp

Pri induktore bude do L zadaná hodnota 20 (predvolené nastavenie je v mH (mili henry), nie v H).

Obr. 6 Nastavenie parametrov cievky

Pri rezistore bude do **RES** zapísaná hodnota 10.

RES			NODE From To	PHASE 1 1	NAME XX0005
<u>G</u> roup No: 0				La <u>b</u> el: R	
Co <u>m</u> ment:					
Output	C ⊻oltage	⊂ Cyrr&Volt	C <u>P</u> ov	wer&Energy	☐ Hi <u>d</u> e ☐ Lock ☐ \$Vintage,1

Obr. 7 Nastavenie parametrov rezistora

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod obsahuje Rule Book k programu EMTP-ATP.

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP** Settings a Simulation.

Settings	
Make File	
run ATP	
Edit ATP-file	,
Edit LIS-file	
Make Name	s
Edit Comma	nds
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file	e) Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4
Obr. 8 A	TP – Settings

Zadá sa krok výpočtu **delta T** 1E–6 s a doba výpočtu **T max** 1 s.

ATP Setting	js		×
Simulation	Output Switch/	'UM Format Variables	
delta T: Imax: ⊻opt: Copt: ∫	1E-6 1 0 0	Simulation type Time domain Frequency scan Harmonic (HFS) Power Frequency	
ОК	Help		

Obr. 9 Dialógové okno Settings – Simulation

Pričom pre hodnoty Xopt a Copt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (W), pokiaľ bude <u>X</u>opt = nastavenej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (mF), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (mS), pokiaľ bude Copt = nastavenej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. zapRL. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári Project preprocesora ATPDraw. Je vhodné, ak je to možné, používať názvy súborov bez diakritiky, nutné je

nepoužívať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (teda zapRL.atp).

Settings	
Make File	
run ATP	
Edit ATP-file	
Edit LIS-file	
Make Names	
nano namos	
Edit Commands	
Edit Commands	Ctrl+Alt+0
Edit Commands run ATP run PCPlot	Ctrl+Alt+0 Ctrl+Alt+1
Edit Commands run ATP run PCPlot run ATP (file)	Ctrl+Alt+0 Ctrl+Alt+1 Ctrl+Alt+2
Edit Commands run ATP run PCPlot run ATP (file) run PlotXY	Ctrl+Alt+0 Ctrl+Alt+1 Ctrl+Alt+2 Ctrl+Alt+3

Obr. 10 ATP – Make File...

Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4. Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú as prezerať z prostredia ATPDraw voľbou **ATP Edit**.

Settings Make File run ATP	
Edit ATP-file Edit LIS-file	
Make Names	
Edit Commands.	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4
Obr. 11 ATP	- Run ATP

Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. Stále v prostredí ATPDraw sa voľbou z horného menu **ATP run PlotXY** spustí grafický postprocesor

Settings Make File run ATP	
Edit ATP-file Edit LIS-file	
Make Names	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Obr. 12 ATP - run PlotXY

A v ňom je s označením v: XX0001–XX0002 uvedený požadovaný priebeh úbytku napätia U_R , v: XX0003–XX0001 priebeh úbytku napätia U_S a v: XX0002– priebeh úbytku napätia U_L . Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním!

MC's PlotXY - Data selection							
Load Refresh					1		?
# File Name	# of \	var	# of Point	Tmax			
cviko2.pl4	6		1000001	1			
Variables	€	Θ	8	Res	et		Ð
t	Vari	able	;		Х	Facto	Offset
v:XXUUU1-XXUUU2 v:XX0002-	t				x	1	0
v:XX0003-XX0001	v:XX0002-					1	0
c:XX0001-XX0002	v:XX0001-XX0002					1	0
C:XX0002-	v:X	x00	003-xx0	001		1	0
		_					_
	Up	dat	е 🖺	Fot	Ir	P	ot

Obr. 13 Dialógové okno programu PlotXY pre vykreslenie priebehov

V okne PlotXY stlačíme tlačidlo Manual Scale v spodnom menu tlačidiel tohto okna (tretie zľava) (obr. 14) a následne v okne Manual Scaling zadáme minimálne a maximálne hranice pre zobrazenie priebehov. Nám postačuje jedna perióda, teda v X-Axis **Max** nastavíme hodnotu 0,01 (obr. 15) a potvrdíme tlačidlom **OK**. (*Poznámka:* desatinnú čiarku v okne Manual Scaling vkladáme ako čiarku, nie bodku).

Obr. 14 Tlačid	Mark Copy Print
🞇 MC's PlotXY - Manual Scaling	
Y-Axis	Right-Y Axis
Max 10	Max inactive
Min 0	Min inactive
X-Axis	
Min 0	Max 0,01
🗹 Exa	ct Match
Cancel	OK

Obr. 15 Okno Manual Scaling

V okne PlotXY stlačíme tlačidlo Show Cursor v spodnom menu tlačidiel tohto okna (štvrté zľava) (obr. 16) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde. Tu zistíme korešpondujúcu zhodu v amplitúde a fázovom natočení, t.j. čase prechodu veličiny nulou.

Obr. 18 Priebehy úbytkov napätí U_R , U_L , U_S

Z daných priebehov odčítaných z obr. 17 a obr. 18 je vidieť, že v čase t = 0,005 platí: $U_R(0,005) = 0,82106$ V, $U_L(0,005) = 9,1789$ V, $U_S(0,005) = 0$ V.

Úbytok napätia na spínači môžeme získať aj sčítaním zvyšných úbytkov napätí na pasívnych prvkoch v obvode a porovnaním s napätím zdroja:

Stlačíme tlačidlo sčítania dvoch priebehov (obr. 19) a následne vyberieme z okna premenných (Variables) dva priebehy (v tomto prípade sú to priebehy napätia na rezistore a cievke:

v: XX0001–XX0002 a v: XX0002–). Po stlačení tlačidla **Plot** sa zobrazí sčítaný priebeh (obr. 20). Z tohto priebehu po vhodnom priblížení je vidieť, že spínač nie je spotrebiteľom elektrickej energie a teda nie je na ňom úbytok napätia. Podobne je z tohto grafu vidieť, že v čase $t \in \langle 0, 1 \ \mu s \rangle$ je priebeh lineárne rastúci a nenadobúda maximálnu hodnotu napäťového zdroja (10 V) hneď od času pripojenia, ale po určitom čase. Tento úsek je vymedzený časovým krokom (**deltaT**), ktorý sme nastavili voľbou ATP – Settings – Simulation na 1 μs . Teda, hodnoty z 1. iterácie (deltaT; t.j. $t \in \langle 0, 1 \ \mu s \rangle$) nie sú správne a musíme odčítavať z grafu až v čase $t \ge$ deltaT.

🎇 MC's PlotXY - Data selection 🛛 📕 🔲 🗙						
Load Refresh]			1		?
# File Name	# of ∨ar	# of Point	Tmax			
cviko2.pl4	6	1000001	1			
Variables	ΘΘ	8	Res	et		Ð
t	Variable			Х	Facto	Offset
v:XX0001-XX0002 v:XX0002-	t			x	1	0
v:XX0003-XX0001	v:XX0	001-XX0	002+v		1	0
c:XX0001-XX0002						
	Update Four Plot					

Obr. 19 Tlačidlo sčítania dvoch priebehov v okne PlotXY

Obr. 20 Priebeh sčítaných úbytkov napätí