Príklad 1

Podľa schémy zapojenia na obr. 1 určte prostredníctvom ATPDraw prúdy prechádzajúce jednotlivými vetvami, pričom viete, že kapacita kondenzátora je rovná hodnote, pri ktorej vznikne v obvode rezonancia.

Riešenie:

Pre daný elektrický obvod platí, že rezonancia paralelne zapojených elektrických prvkov vznikne, ak bude mať výsledná komplexná impedancia obvodu len reálnu časť, teda ohmický charakter. V tomto prípade postačuje, aby sa vzájomné paralelné zapojenie prvkov *L* a *C* rovnalo nule, t.j.

Obr. 1 Schéma zapojenia

$$\frac{1}{\mathbf{Z}} = \frac{1}{j \cdot X_L} + \frac{1}{-j \cdot X_C}$$

$$\frac{1}{\mathbf{Z}} = \frac{1}{j \cdot \omega \cdot L} + \frac{1}{-j \cdot \frac{1}{\omega \cdot C}}$$

$$0 = \frac{1}{j \cdot \omega \cdot L} + j \cdot \omega \cdot C$$

$$-j \cdot \omega \cdot C = \frac{1}{j \cdot \omega \cdot L}$$

$$C = \frac{1}{\omega^2 \cdot L}$$

$$C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L} = \frac{1}{(2 \cdot \pi \cdot 50)^2 \cdot 0.01} = 1.0132 \cdot 10^{-3} \text{ F}$$

V ATPDraw sa vytvorí schéma zapojenia podľa obr. 2. Na napäťovom zdroji U nastavíme v položke **Amp** hodnotu 125 a v položke **Tsta** –1 a v **Tsto** hodnotu 0, čo má za následok stály napäťový zdroj. V **Type of source** ponecháme voľbu **Voltage**. Fázové natočenie zvolíme v položke **Pha** 0 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj) a frekvenciu v položke **f** 50.

Obr. 2 Schéma zapojenia v ATPDraw

Component: Ac1ph.	sup				×
<u>A</u> ttributes					
DATA	VALUE		NODE	PHASE	NAME
Amp.	125		AC	1	
f	50				
Pha	0				
A1	0				
TSta	-1				
TSto	0				
, Order: 0				Label: U	
Co <u>m</u> ment:					
Type of source					_
C Current					🔲 Hi <u>d</u> e
C V I					🗖 Lock
.• Voltage					
10		OK		Connect	
		<u> </u>		Lancel	

Obr. 3 Nastavenie parametrov pre napäťový zdroj U

Vo vlastnostiach rezistora nastavíme v položke **RES** hodnotu 10. V **Output** nastavíme voľbu **Current & Voltage** (obr. 4).

Component: RESISTOR.	SUP				×
<u>A</u> ttributes					
DATA	VALUE	П	NODE	PHASE	NAME
RES	10		From	1	
			To	1	
			I		
Order: U				Label: ^H	
Co <u>m</u> ment:					
C Output					☐ Hi <u>d</u> e
3 - Current&Volta	ige 🔻				🗖 Lock
,	_				<u>\$</u> Vintage,1
		<u>0</u> K		<u>C</u> ancel	Help

Obr. 4 Nastavenie parametrov rezistora

Vo vlastnostiach cievky nastavíme v položke L hodnotu 10 (predvolené je zadávanie hodnôt v mH). V **Output** nastavíme voľbu **Current & Voltage** (obr. 5).

Component: IND_RP.5L Attributes	IP				×
Attributes	VALUE 10 0		NODE From To	PHASE 1 1	NAME
Order: 0 Co <u>m</u> ment:				Label: L	
Output 3 - Current&Volt	age 💌				☐ Hige ☐ Lock. ☐ \$Vintage,1
-33330-		<u>0</u> K		<u>C</u> ancel	Help

Obr. 5 Nastavenie parametrov cievky

Vo vlastnostiach kondenzátora nastavíme v položke C hodnotu 1013.2 (predvolené je zadávanie hodnôt v μ F). V **Output** nastavíme voľbu **Current & Voltage** (obr. 6).

Component: CAP_	RS.SUP				X
DATA	VALUE		NODE	PHASE	NAME
С	1013.212		From	1	
Ks	0		То	1	
			1		
Urder: JU				Label: Ju	
Co <u>m</u> ment:					
- Output					
					I Hige
3 - Curren	t&Voltage 🗾 💌				🗖 Lock
					≦ Vintage,1
		<u>0</u> K		<u>C</u> ancel	Help

Obr. 6 Nastavenie parametrov kondenzátora

Časové podmienky simulácie sa nastavia voľbou z horného menu ATP Settings a Simulation (obr. 7). Keďže sa jedná striedavý obvod s frekvenciou 50 Hz, zaujíma nás prechodný dej, nastavíme krok výpočtu **delta T** 1E–7 s a dobu výpočtu, minimálne však aspoň dve periódy (0,04 s), napr. Tmax 0,1 s (obr. 8).

	ATP Settings
	Simulation Output Switch/UM Format Record Variables
Settings Make File run ATP Edit ATP-file Edit LIS-file	delta T: 1E-7 Imax: 0.1 Xopt: 0 Copt: 0 Copt: 0 Power Frequency
Make Names	
Edit Commands run ATP Ctrl+Alt+0 run PCPlot Ctrl+Alt+1 run ATP (file) Ctrl+Alt+2 run PlotXY Ctrl+Alt+3 Edit Text Ctrl+Alt+4	
Obr. 7 ATP – Settings	Obr. 8 Dialógové okno Settings – Simulati

Obr. 8 *Dialógové okno Settings – Simulation*

Príkazom Make File v hornom menu ATP sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (obr. 9). Príkazom run ATP v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). V prostredí ATPDraw sa voľbou z horného menu ATP run PlotXY spustí grafický postprocesor (obr. 11).

Settings Make File run ATP		Settings Make File run ATP		Settings Make File run ATP	
Edit ATP-file Edit LIS-file		Edit ATP-file Edit LIS-file		Edit ATP-file Edit LIS-file	
Make Names		Make Names		Make Names	
Edit Commands run ATP run PCPlot run ATP (file) run PlotYY	Ctrl+Alt+0 Ctrl+Alt+1 Ctrl+Alt+2 Ctrl+Alt+3	Edit Commands. run ATP run PCPlot run ATP (file) run PlotYY	Ctrl+Alt+0 Ctrl+Alt+1 Ctrl+Alt+2 Ctrl+Alt+3	Edit Commands run ATP run PCPlot run ATP (file)	Ctrl+Alt+0 Ctrl+Alt+1 Ctrl+Alt+2 Ctrl+Alt+3
Edit Text	Ctrl+Alt+4	Edit Text	Ctrl+Alt+4	Edit Text	Ctrl+Alt+4

Obr. 9 ATP – Make File... *Obr.* 10 ATP – run ATP *Obr.* 11 ATP – run PlotXY

A v ňom je s označením v: XX0005– uvedený priebeh napätia v jednotlivých vetvách (pri paralelnej rezonancii v danom obvode sú napätia rovnaké). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia.

Obr. 12 Dialógové okno programu PlotXY pre vykreslenie priebehov

Obr. 13 Priebeh napätia vo vyššie uvedenom obvode

Podobne, s označením c: XX0005– je uvedený priebeh prúdu v jednotlivých vetvách. Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia.

Obr. 14 Dialógové okno programu PlotXY pre vykreslenie priebehov

V okne PlotXY stlačíme tlačidlo Manual Scale v spodnom menu tlačidiel tohto okna (tretie zľava) (obr. 16) a následne v okne Manual Scaling zadáme minimálne a maximálne hranice pre zobrazenie priebehov. Nám postačuje jedna perióda, teda v X-Axis **Max** nastavíme hodnotu 0,02 (obr. 17) a potvrdíme tlačidlom **OK**.

🚰 MC's PlotXY - Manual Scaling	
Y-Axis	Right-Y Axis
Max 50	Max inactive
Min -40	Min inactive
X-Axis	
Min 0	Max 0,02
	Match
Cancel	OK

Obr. 17 Okno Manual Scaling

V okne PlotXY stlačíme tlačidlo Show Cursor v spodnom menu tlačidiel tohto okna (štvrté zľava) (obr. 18) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 18 Tlačidlo Show Cursor

Obr. 19 Zobrazenie maximálnej hodnoty prúdu **I**_R

Yalues
File rezonanciaRLC.pl4
0,014979
-0,082074
39,774
-39,788
Interpolation

Obr. 20 Zobrazenie času prechodu prúdu I_R nulou

Obr. 21 Priebeh prúdu I_R vo vyššie uvedenom obvode

Values
File rezonanciaRLC.pl4
4,9791E-03
0,082074
-39,789
39,788
Interpolation

Obr. 22 Zobrazenie maximálnej hodnoty prúdu **I**_L

Values
File rezonanciaRLC.pl4
0
12,5
0
0
Interpolation

Obr. 23 Zobrazenie času prechodu prúdu I_L nulou

Obr. 24 Priebeh prúdu I_L vo vyššie uvedenom obvode

Obr. 25 Zobrazenie maximálnej hodnoty prúdu **I**_C

Obr. 26 Zobrazenie času prechodu prúdu I_C nulou

Obr. 27 Priebeh prúdu I_C vo vyššie uvedenom obvode

Z daných priebehov odčítaných v 1. perióde PlotXY je vidieť, že prúdy prechádzajú nulou v časoch, ktorým zodpovedajú fázové natočenia podľa vzťahu $\varphi = 360^{\circ} - \frac{t}{T} \cdot 360^{\circ}$ (pretože boli odčítané v 1. perióde):

$$t_{1} = 0.01498 \text{ s} \implies \varphi_{1} = 360^{\circ} - \frac{t_{1}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0.014979}{0.02} \cdot 360^{\circ} = 90.4^{\circ} \approx -269.6^{\circ}$$

$$t_{2} = 0 \text{ s} \implies \varphi_{2} = 360^{\circ} - \frac{t_{2}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0}{0.02} \cdot 360^{\circ} = 360^{\circ} \approx 0^{\circ}$$

$$t_{3} = 0.01 \text{ s} \implies \varphi_{3} = 360^{\circ} - \frac{t_{3}}{T} \cdot 360^{\circ} = 360^{\circ} - \frac{0.01}{0.02} \cdot 360^{\circ} = 180^{\circ} \approx -180^{\circ}$$

$$I = I_{\text{max}} \cdot e^{j \cdot \frac{t}{T} \cdot 360^{\circ}} \text{ A}$$

$$I_{R} = 12,5 \cdot e^{j \cdot 90^{\circ}} \text{ A}$$

$$I_{L} = 39,788 \cdot e^{j \cdot 360^{\circ}} = 39,788 \cdot e^{j \cdot 0^{\circ}} \text{ A}$$

$$I_{C} = 39,774 \cdot e^{j \cdot 180^{\circ}} = 39,774 \cdot e^{-j \cdot 180^{\circ}} \text{ A}$$

$$U_{R} = U_{L} = U_{C} = U = 125 \cdot e^{j \cdot 90^{\circ}} \text{ V}$$