VYPÍNANIE SKRATOV

Vypínanie

Ide o priebeh prerušovania kontaktov vypínača, kedy pri oddelení kontaktov vzniká a zháša sa oblúk, prerušuje sa prúd a obnovuje napätie na kontaktoch vypínača.

Prerušenie prúdu

Je dočasný zánik prúdu (vypnutie) a hodnota striedavého prúdu je nulová.

Zotavené napätie

Transient Recovery Voltage (TRV) je zotavené napätie, ktoré sa objaví na kontaktoch vypínača po prerušení prúdu.

1. Parametre charakterizujúce vypínanie skratového prúdu

Vypínanie nastáva pri prechode prúdu nulou po rozpojení kontaktov vypínača v striedavom obvode. Úspešnosť alebo neúspešnosť vypnutia závisí od týchto parametrov:

- maximálna hodnota prúdu v danom obvode
- časová zmena prúdu pred prechodom prúdu nulou (di/dt)٠
- nárast zotaveného napätia medzi kontaktmi (du/dt)•
- maximálna hodnota zotaveného napätia (TRV) ٠
- energia zhášaného oblúka (tlak plynu medzi kontaktmi, tvar kontaktov, počet sériových prerušovacích dráh, atď.)

Pri vypínaní prevláda prúdová strmosť (di/dt), nárast TRV (du/dt) a tlak plynu medzi kontaktmi (*p*). Autor stanovil experimentálne nasledujúcu rovnicu:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = K \cdot p^{\alpha} \left(\frac{\mathrm{d}i}{\mathrm{d}t}\right)^{\beta} \tag{1}$$

Experimentálne získané hodnoty pre vypínače s SF₆ od dvoch výrobcov sú:

GCB $\alpha = 2,68$, $\beta = -2,24$

Obr. 1 Medzná hranica prerušenia prúdu

2 Metóda injekcie prúdu pre riešenie zotaveného napätia pri vypínaní obvodu

Ako ukazuje Obr. 2, môže byť vypínací obvod nahradený podľa Theveninovej vety obvodom skratu a obvodom prúdového zdroja, ktorý do obvodu injektuje z prúdového zdroja opačný prúd. Pri zopnutí prúdového zdroja v okamihu odpojenia vypínača v pôvodnom obvode a pre nulový počiatočný prúd zdroja sú veličiny pôvodného obvodu dané superpozíciou veličín obvodu skratu a obvodu prúdového zdroja. Zotavené napätie (TRV) je tu priamo napätím na prúdovom zdroji (viď. *Preklad textov prof. Eiichi Haginomoriho pre prácu s EMTP-ATP*, kapitola 2).

Obr. 2 Náhrada obvodu pre demonštráciu vzniku zotaveného napätia pomocou Theveninovej vety

V príklade je zdroj s frekvenciou 50 Hz, s amplitúdou napätia 10 V pripojený k sériovému rezistoru 1 Ω a indukčnosti 1 mH. Kapacita má veľkosť 1 μ F. Ustálený skratový prúd má amplitúdu:

$$\frac{U}{\sqrt{R^2 + X_L^2}} = \frac{10}{\sqrt{1 + 0.314^2}} = 9,54 \text{ A}$$

Prúd je pritom oneskorený za napätím o arctan $0,314 = 17,43^{\circ}$ a nulou prejde v čase $(90^{\circ} + 17,43^{\circ})/18 = 5,97$ ms. Vo výpočte bol zanedbaný malý prúd kondenzátorom. Takto definovaný prúdový zdroj potom umožňuje vypočítať zotavené napätie podľa Obr. 2 vpravo. Týmto spôsobom sa dajú analyzovať priebehy zotavených napätí v rôznych konfiguráciách elektrických sietí.

Obr. 3 Priebeh zotaveného napätia, skratového a injektovaného prúdu pre schému na Obr. 2

Postupnosť krokov pri zadávaní údajov v programe ATP:

V ATPDraw sa vytvorí schéma zapojenia podľa obr. 4. Na napäťovom zdroji nastavíme v položke **Amp** hodnotu 10 a v položke **Tsta** –1 a **Tsto** hodnotu 1, čo má za následok napäťový zdroj po dobu 1 sekundy. V **Type of source** ponecháme voľbu **Voltage**. Frekvenciu zvolíme v položke **f** 50.

Obr. 4 Schéma zapojenia v ATPDraw

omponent: Sup\AC	1PH.SUP				2
<u>A</u> ttributes					
DATA	VALUE	Т	NODE	PHASE	NAME
Amp.	10		AC	1	
f	50				
Pha	0				
A1	0				
TSta	-1				
TSto	1				
	-				
Order: 0				Label: U	
Co <u>m</u> ment:					
Type of source					_
C Current					I Hi <u>d</u> e
C. Maltana					🗖 Lock
 Voltage 					
-6-1		пк		Cancel	Help
${}$		DK			

Obr. 5 Nastavenie parametrov pre napäťový zdroj U

ttributes	RLC.SUP				-
DATA R L C	VALUE 1 1 0	NOI Froi To	DE PH4 n 1 1	ASE NAME	
Order: 0 Co <u>m</u> ment:			Labe	:	
Output	•			☐ Hige ☐ Look ☐ \$Vinta	age,1
		<u>0</u> K	Cance		lelp

V RLC prvku zadáme do položky **R** hodnotu 1, do **L** hodnotu 1 a do **C** hodnotu 0.

Obr. 6 Nastavenie parametrov RLC prvku

V položke kondenzátora C zadáme hodnotu 1 (μ F). Keďže chceme zistiť veľkosť napätia na tomto prvku, v položke **Output** nastavíme voľbu **Voltage**.

Component: Sup\CA Attributes	PACITO.SUP				X
DATA C	VALUE 1		NODE From To	PHASE 1 1	
Order: 0			,	Label:	
Co <u>m</u> ment:					
Output					🗖 Hide
2 - Voltage	•				🗖 Lock
					<u>\$</u> Vintage,1
		<u>0</u> K		<u>C</u> ancel	Help

Obr. 7 Nastavenie parametrov kondenzátora

Component: Sup\SWI	TCHTC.SUP				X
DATA	VALUE	ГΓ	NODE	PHASE	NAME
T-cl	-1		SWF	1	
Т-ор	0.005		SWT	1	
<u>lmar</u>	0				
Order: 0				Label:	
Output	×				☐ Hige ☐ Lock
		<u>0</u> K		<u>C</u> ancel	Help

Na vypínači zadáme v položke T-cl hodnotu -1, v T-op hodnotu 0.005.

Obr. 8 Nastavenie parametrov vypínača

V náhradnom obvode sa hodnoty napäťového zdroja nastavia rovnako ako na obr. 4 a parametre RLC prvku podobne ako na obr. 6, pričom v položke **Output** nastavíme voľbu **Current**. Hodnoty kondenzátora sú rovnaké ako na obr. 7.

Na prúdovom zdroji nastavíme v položke **Amp** vypočítanú hodnotu ustáleného skratového prúdu 9.54 a v položke **Tsta** 0.00597 a **Tsto** hodnotu 1. V **Type of source** zvolíme voľbu **Current**. Fázové natočenie nastavíme v položke **Pha** 90 a frekvenciu v položke **f** 50.

omponent: Sup\A	C1PH.SUP				2
<u>A</u> ttributes					
DATA	VALUE		NODE	PHASE	NAME
Amp.	9.54		AC	1	
f	50				
Pha	90				
A1	0				
TSta	0.00597				
TSto	1				
Order: 0				Label:	
Co <u>m</u> ment:					
Type of source					
 Current 					I Hi <u>d</u> e
C Voltage					🗖 Lock
HO-		<u>D</u> K		Cancel	Help
	_			_	

Obr. 9 Nastavenie parametrov pre napäťový zdroj U

Časové podmienky simulácie sa nastavia voľbou z horného menu ATP Settings a Simulation (obr. 10). Keďže sa jedná prechodný dej, krok výpočtu musíme tomu prispôsobiť delta T 1E-5 s a podobne aj doba výpočtu, napr. Tmax 0.02 s (obr. 11).

		ATP Settings	×
		Simulation Output Switch/UM Format Record Variables	
Settings Make File run ATP		delta T: 1E-5 Simulation type Imax: 0.02 © Time domain Xopt: 0 © Frequency scan Copt: 0 ☐ Harmonic (HFS)	
Edit ATP-file Edit LIS-file			
Make Names			
Edit Commands run ATP	Ctrl+Alt+0		
run PCPlot	Ctrl+Alt+1		
run ATP (file)	Ctrl+Alt+2		
run PlotXY	Ctrl+Alt+3		
Edit Text	Ctrl+Alt+4		
O_{L} 10 T_{D}	Catting	Ohn 11 Dialógan á alma Cattinga Cinn	1

Obr. 10 ATP – Settings

Príkazom Make File v hornom menu ATP sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (obr. 12). Príkazom run ATP v hornom menu ATP sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 13). V prostredí ATPDraw sa voľbou z horného menu ATP run PlotXY spustí grafický postprocesor (obr. 14).

Settings Make File run ATP		Settings Make File run ATP		Settings Make File run ATP		
Edit ATP-file Edit LIS-file		Edit ATP-file Edit LIS-file		Edit ATP-file Edit LIS-file		
Make Names		Make Names		Make Names		
Edit Commands		Edit Commands		Edit Commands		
run ATP Ctri-	+Alt+0	run ATP	Ctrl+Alt+0	run ATP	Ctrl+Alt+0	
run PCPlot Ctrl	+Alt+1	run PCPlot	Ctrl+Alt+1	run PCPlot	Ctrl+Alt+1	
run ATP (file) Ctrl-	+Alt+2	run ATP (file)	Ctrl+Alt+2	run ATP (file)	Ctrl+Alt+2	
run PlotXY Ctri-	+Alt+3	run PlotXY	Ctrl+Alt+3	run PlotXY	Ctrl+Alt+3	
Edit Text Ctrl	+Alt+4	Edit Text	Ctrl+Alt+4	Edit Text	Ctrl+Alt+4	

Obr. 12 ATP – Make File... *Obr.* 13 ATP – run ATP *Obr.* 14 ATP – run PlotXY

A v ňom je s označením v: -XX0003 uvedený požadovaný priebeh zotaveného napätia a c: XX0006– priebeh skratového a c: -XX0012 priebeh injektovaného prúdu. Stlačením ľavého tlačidla myši (pravého pre prúdy) sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia.

Obr. 15 Dialógové okno programu PlotXY pre vykreslenie priebehov

Obr. 16 Priebeh zotaveného napätia, skratového a injektovaného prúdu