Príklad 1

Podľa schémy zapojenia na obr. 1 určte prostredníctvom ATPDraw napätia a prúdy v jednotlivých vetvách záťaže, ak v čase t = 0,1 s nastal skrat medzi fázami L2 a L3 so zemou. Parametre prvkov prepočítané na dĺžku vedenia 11,5 km: $U_{12} = 22 \cdot e^{j \cdot 0^{\circ}}$ kV, $U_{23} = 22 \cdot e^{-j \cdot 120^{\circ}}$ kV, $U_{13} = 22 \cdot e^{j \cdot 120^{\circ}}$ kV, $R_{v1} = R_{v2} = R_{v3} = 15,985 \Omega$, $X_{v1} = X_{v2} = X_{v3} = 4,416 \Omega$, $C_0 = 1,108 \cdot 10^{-7}$ F, $R_1 = R_2 = R_3 = 0,011 \Omega$, $X_{L1} = X_{L2} = X_{L3} = 0,005 \Omega$, f = 50 Hz. Určte dané priebehy napätí a prúdov na záťaži pred a po skrate.

Obr. 1 Schéma zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvorí schéma zapojenia podľa obr. 2.

Na 3-f napäťovom zdroji U, podobne ako pri 1-f zdroji, sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 17962,9 (nakoľko v zadaní bola uvedená hodnota združeného napätia, $U_{\text{max}} = U_{\text{zdr}} \cdot \frac{\sqrt{2}}{\sqrt{3}} = 22000 \cdot \frac{\sqrt{2}}{\sqrt{3}} \cong 17962,9$). V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 10, čo má za následok stály napäťový zdroj počas doby 10 sekúnd. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie napätia U_1 sa zadá v položke **Pha** –90 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. φ – $90^\circ = 0^\circ - 90^\circ = -90^\circ$) a frekvenciu v položke **f** 50. Fázové natočenia a amplitúdy ostatných fáz sa pri *symetrickom 3-f* napäťovom *zdroji* nezadávajú.

Na modeli prvku vedenia sa postupne zadávajú hodnoty impedancií jednotlivých fáz v poradí L1, L2, L3. Do kolónok **R_1**, **R_2**, **R_3** sa zadá hodnota rezistancie vedenia 15.985 a do kolónok **L_1**, **L_2**, **L_3** sa zadá hodnota reaktancie vedenia 4.416 (obr.3).

Na modeli prvku záťaže sa zadávajú obdobne ako pri vedení hodnoty impedancií jednotlivých vetiev. Do kolónok **R_1**, **R_2**, **R_3** sa zadá hodnota rezistancie záťaže 0.011 a do kolónok **L_1**, **L_2**, **L_3** sa zadá hodnota reaktancie záťaže 0.005. V záložke **Output** sa vyberie možnosť **Current&Voltage**.

Pri modeli prvku kondenzátora bude do kolónky C zadaná hodnota 0.1108 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr. 4).

Skrat je možné modelovať vypínačom medzi príslušnými fázami zopnutým v určitom čase. Do kolónky **T-cl** sa zadá hodnota zopnutia, t.j. čas skratu 0.1 a do kolónky **T-op** sa zadá čas vypnutia vypínača, t.j. čas vypnutia skratu. Nakoľko čas vypnutia skratu nie je zadaný, zadáme vyššiu hodnotu, napr. 10.

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schéma zapojenia elektrického obvodu v ATPDraw

Component: AC3PH.SUP		×	Component: RLC3.5UP	•				×
Attributes			Attributes					
		- 1		,			,	1
DATA VALUE NODE	E PHASE NAME		DATA	VALUE	-	NODE	PHASE	NAME
Amp. 17962.92478 AC3	3		R_1	15.985		IN1	3	
f 50			L_1	4.416		OUT1	3	
pha -90			C_1	0				
A1 0			R_2	15.985				
Tstart -1			L_2	4.416				
Tstop 10			C_2	0				
			R_3	15.985				
			L_3	4.416	-1			
Order: 0	Label: U		Order: 0		_		Label: vedeni	•
Comment:			Co <u>m</u> ment:					
Type of source			- Output					
C Current	I_ Hi <u>d</u> e		- unput					I Hide
and a second s	🗖 Lock		0 · No	•				🗖 Lock
(• Voltage								□ \$Vintage,1
	Coursel Units	1			οr	1	C	
					ŪK			

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a vedenie

Component: RLCD3.SUP	Component: CAP_R5.SUP
Attributes	Attributes
DATA VALUE ▲ R_1 0.011 ▲ L_1 0.005 ■ C_1 0 ■ R_2 0.011 ■ L_2 0.005 ■ C_2 0 ■ R_3 0.011 ■	DATA VALUE NODE PHASE NAME C 0.1108 From 1 K* 0 1 To 1
Order: 0 Label: Zataz	Order: 0 Labet CO
Comment	Comment
Output 3 - Current&Voltage Image: 1	Output Utput I Hige U-No I Lock SVintage,1
<u>QK</u> <u>C</u> ancel <u>H</u> elp	

Obr. 4 Nastavenie parametrov záťaže a kapacity voči zemi C_0

Data Value NODE PHASE Data 0.1 SWF 1 Trol 0.1 SWF 1 Inst 0 0 1 1	ATP Settings Simulation Output Switch/UM Format Record Variat geta T: TE-6 Simulation type Imax 1 C Frequency scan Gopt 0 C Harmonic (HFS)	X sles
Order: 0 Labet 5		
Commerc Couput- D-No	F Hide	

Obr. 5 Nastavenie parametrov vypínačov a Dialógové okno Settings – Simulation

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation**. Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu, napr. **delta T** 1E–6 s a doba výpočtu **T max** 1 s (skrat nastane v čase t = 0,1 s, a pre odčítanie ustálených hodnôt je potrebné nastaviť dostatočný čas, kedy je možné dej po skrate považovať za ustálený, t.j. 1 s). V kolónke **Xopt** sa nastaví hodnota frekvencie 50, nakoľko je v zadaní viac hodnôt zadaných ako reaktancie (obr.5).

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude <u>X</u>opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad1a. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad1a.atp) (obr. 6). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 7). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 8).

V grafickom postprocesore je s označením v: XX0001A – XX0001B uvedený požadovaný priebeh napätia na záťaži medzi fázami L1 a L2, (t.j. napätie medzi uzlom A a uzlom B), v: XX0001B – XX0001C priebeh napätia na záťaži medzi fázami L2 a L3 (t.j. napätie medzi uzlom B a uzlom C), v: XX0001C – XX0001A priebeh napätia na záťaži medzi fázami L3 a L1 (t.j. napätie medzi uzlom C a uzlom A). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie s napäťovou osou na ľavej strane a stlačením tlačidla **Plot** sa následne zobrazia. Podobne sú zobrazené prúdy, pričom prúdy je vhodné označovať pravým tlačidlom myši, aby ich prúdová os bola na pravej strane. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data selec	ion					. 🗆 🗙
Load Refresh	Ī			1		?
# File Name	# of var:	# of Point	Tmax			
priklad1a.pl4	7	1000001	1			
Variables	Θ	8	Res	et		Ð
t	Variable	e		X	Facto	Offset
v:X0001A-X0001B v:X0001B-X0001C	t			x	1	0
v:X0001C-X0001A	v: X00	01A-X000	01в		1	0
c:X0001A-X0001B	v:X00	01B-X000	01C		1	0
C:X00016-X0001C	v: X00	01C-X000)1A		1	0
	c:X00	01A-X000)1в		1	0
	c:XOO	01в-х000)1C		1	0
	c:XOO	01C-X000)1A		1	0
	Upda	te 🖹	Fol	ır	P	lot

Obr. 9 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätí pred a po skrate (obr. 13).

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 11) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

Hodnoty pred skratom je možné určiť obdobným postupom, ako bolo uvedené v príkladoch na 2. cvičení (1-f obvody) v rozmedzí $t \in (0;0,1)$ s. Ustálené hodnoty po skrate

by bolo vhodné odčítať v čase ∞, ale v záložke ATP–Settings...–Simulation bola v kolónke zadaná hodnota v Tmax 1 s, preto postačuje, ak sa ustálené hodnoty po skrate odčítajú v blízkostí Tmax, t.j. čo najneskôr od vzniku skratu.

Obdobne sa postupuje pri zobrazení a odčítaní hodnôt prúdov pred a po skrate (obr. 13).

Výsledné hodnoty ustálených prúdov a napätí pred a po skrate:

• pred skratom:

$$\begin{split} \varphi_{UAB} &= 360^{\circ} \cdot n - \frac{t_{AB}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.017833}{0.02} \cdot 360^{\circ} = 39^{\circ}; \ \boldsymbol{U}_{Z,AB} = 7,5545 \cdot e^{j \cdot 39^{\circ}} \text{ V} \\ \varphi_{UBC} &= 360^{\circ} \cdot n - \frac{t_{BC}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.0045}{0.02} \cdot 360^{\circ} = 279^{\circ}; \ \boldsymbol{U}_{Z,BC} = 7,5545 \cdot e^{j \cdot 279^{\circ}} \text{ V} \\ \varphi_{UCA} &= 360^{\circ} \cdot n - \frac{t_{CA}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.011167}{0.02} \cdot 360^{\circ} = 159^{\circ}; \ \boldsymbol{U}_{Z,CA} = 7,5545 \cdot e^{j \cdot 159^{\circ}} \text{ V} \\ \varphi_{IAB} &= 360^{\circ} \cdot n - \frac{t_{AB}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.019191}{0.02} \cdot 360^{\circ} = 14,56^{\circ}; \ \boldsymbol{I}_{Z,AB} = 625,21 \cdot e^{j \cdot 14,56^{\circ}} \text{ A} \\ \varphi_{IBC} &= 360^{\circ} \cdot n - \frac{t_{BC}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.0058581}{0.02} \cdot 360^{\circ} = 254,55^{\circ}; \ \boldsymbol{I}_{Z,BC} = 625,21 \cdot e^{j \cdot 254,55^{\circ}} \text{ A} \\ \varphi_{ICA} &= 360^{\circ} \cdot n - \frac{t_{CA}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.012525}{0.02} \cdot 360^{\circ} = 134,55^{\circ}; \ \boldsymbol{I}_{Z,CA} = 625,21 \cdot e^{j \cdot 134,55^{\circ}} \text{ A} \end{split}$$

• po skrate:

$$\begin{split} \varphi_{UAB} &= 360^{\circ} \cdot n - \frac{t_{AB}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0,9995}{0,02} \cdot 360^{\circ} = 9^{\circ} \text{; } \boldsymbol{U}_{Z,AB} = 6,5416 \cdot e^{j\cdot9^{\circ}} \text{ V} \\ \varphi_{UBC} &= 360^{\circ} \cdot n - \frac{t_{BC}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{0,2}{0,02} \cdot 360^{\circ} = 0^{\circ} \text{; } \boldsymbol{U}_{Z,BC} = 0 \cdot e^{j\cdot0^{\circ}} \text{ V} \\ \varphi_{UCA} &= 360^{\circ} \cdot n - \frac{t_{CA}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0,9895}{0,02} \cdot 360^{\circ} = 189^{\circ} \text{; } \boldsymbol{U}_{Z,CA} = 6,5416 \cdot e^{j\cdot189^{\circ}} \text{ V} \\ \varphi_{IAB} &= 360^{\circ} \cdot n - \frac{t_{AB}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0,98086}{0,02} \cdot 360^{\circ} = 344,34^{\circ} \text{; } \boldsymbol{I}_{Z,AB} = 541,39 \cdot e^{j\cdot344,34^{\circ}} \text{ A} \\ \varphi_{IBC} &= 360^{\circ} \cdot n - \frac{t_{BC}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{0,2}{0,02} \cdot 360^{\circ} = 0^{\circ} \text{; } \boldsymbol{I}_{Z,BC} = 0 \cdot e^{j\cdot0^{\circ}} \text{ A} \\ \varphi_{ICA} &= 360^{\circ} \cdot n - \frac{t_{CA}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0,99086}{0,02} \cdot 360^{\circ} = 164,52^{\circ} \text{; } \boldsymbol{I}_{Z,CA} = 541,39 \cdot e^{j\cdot164,52^{\circ}} \text{ A} \end{split}$$

Príklad 2

Podľa schémy zapojenia na obr. 1 určte prostredníctvom ATPDraw napätia a prúdy v jednotlivých vetvách záťaže, ak v čase t = 0,1 s nastal skrat medzi fázami L2 a L3 so zemou. Parametre prvkov prepočítané na dĺžku vedenia 11,5 km: $U_{12} = 22 \cdot e^{j \cdot 0^{\circ}}$ kV, $U_{23} = 22 \cdot e^{-j \cdot 120^{\circ}}$ kV, $U_{13} = 22 \cdot e^{j \cdot 120^{\circ}}$ kV, $R_{v1} = R_{v2} = R_{v3} = 15,985 \Omega$, $X_{v1} = X_{v2} = X_{v3} = 4,416 \Omega$, $C_0 = 1,108 \cdot 10^{-7}$ F, $R_1 = R_2 = R_3 = 0,011 \Omega$, $X_{L1} = X_{L2} = X_{L3} = 0,005 \Omega$, f = 50 Hz. Určte dané priebehy napätí a prúdov na záťaži pred a po skrate.

Obr. 1 Schéma zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvorí schéma zapojenia podľa obr. 2.

Na 3-f napäťovom zdroji U, podobne ako pri 1-f zdroji, sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 17962,9 (nakoľko v zadaní bola uvedená hodnota združeného napätia, $U_{\text{max}} = U_{\text{zdr}} \cdot \frac{\sqrt{2}}{\sqrt{3}} = 22000 \cdot \frac{\sqrt{2}}{\sqrt{3}} \cong 17962,9$). V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 10, čo má za následok stály napäťový zdroj počas doby 10 sekúnd. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie napätia U_1 sa zadá v položke **Pha** –90 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. φ – $90^\circ = 0^\circ - 90^\circ = -90^\circ$) a frekvenciu v položke **f** 50. Fázové natočenia a amplitúdy ostatných fáz sa pri *symetrickom 3-f* napäťovom *zdroji* nezadávajú.

Na modeli prvku vedenia sa postupne zadávajú hodnoty impedancií jednotlivých fáz v poradí L1, L2, L3. Do kolónok **R_1**, **R_2**, **R_3** sa zadá hodnota rezistancie vedenia 15.985 a do kolónok **L_1**, **L_2**, **L_3** sa zadá hodnota reaktancie vedenia 4.416 (obr.3).

Na modeli prvku záťaže sa zadávajú obdobne ako pri vedení hodnoty impedancií jednotlivých vetiev. Do kolónok **R_1**, **R_2**, **R_3** sa zadá hodnota rezistancie záťaže 0.011 a do kolónok **L_1**, **L_2**, **L_3** sa zadá hodnota reaktancie záťaže 0.005. V záložke **Output** sa vyberie možnosť **Current&Voltage**.

Pri modeli prvku kondenzátora bude do kolónky C zadaná hodnota 0.1108 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr. 4).

Skrat je možné modelovať vypínačom medzi príslušnými fázami zopnutým v určitom čase. Do kolónky **T-cl** sa zadá hodnota zopnutia, t.j. čas skratu 0.1 a do kolónky **T-op** sa zadá čas vypnutia vypínača, t.j. čas vypnutia skratu. Nakoľko čas vypnutia skratu nie je zadaný, zadáme vyššiu hodnotu, napr. 10.

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schéma zapojenia elektrického obvodu v ATPDraw

Component: AC3PH.SUP	Component: RLC3.5UP
Attributes	Attributes
DATA VALUE Amp. 17962.92478 f 50 pha :90 A1 0 Tatat :1 Tatat :10	Data Value Data Value R_1 15.985 L_1 4.416 C_1 0 R_2 15.985 L_2 4.416 C_2 0 R_3 15.985
Drder. 0 Labet U	0rder: 0 Labet Vederie
Co <u>m</u> ment	Comment:
C Current Hige	Output Image: Hige Image: D - No Image: Dock Image: Symplex constraints Image: Symplex constraints
	ELC QK Cancel Help

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a vedenie

Component: RLCY3.5UP	Component: CAP_RS.SUP	×
Attributes	Attributes	
DATA VALUE NODE PHASE NAME R_1 0.011 INODE INODE <td>DATA VALUE NODE PHASE NAME C 0.1108 From 1 1 Ks 0 To 1 1</td> <td></td>	DATA VALUE NODE PHASE NAME C 0.1108 From 1 1 Ks 0 To 1 1	
Order: 0 Labet zataz	Order: 0 Labet: C0	
Comment:	Comment:	
Dutput 3 - Current&Voltage Image: 1 \$Vintage: 1 \$Vintage: 1	Output Image: Hige Image: Im	
<u>DK</u>	DK Cancel Help	

Obr. 4 Nastavenie parametrov z $dtaže a kapacity voči zemi C_0$

Component: SWITCHTC.SUP	×	
DATA VALUE T-cl 0.1 Top 10 Imar 0	NODE PHASE NAME SWF 1 SWT 1	ATP Settings X Simulation Dutput Switch/UM Format Record Variables geha T: TE-6 Imax 1 Citize domain Xopt: 50 Copt: 0 Event Frequency gcan Perver Frequency
Order: 0	Labet S	
Output	☐ Hide ☐ Lock	
	<u>C</u> ancel <u>H</u> elp	 КНеір

Obr. 5 Nastavenie parametrov vypínačov a Dialógové okno Settings – Simulation

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation**. Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu, napr. **delta T** 1E–6 s a doba výpočtu **T max** 1 s (skrat nastane v čase t = 0,1 s, a pre odčítanie ustálených hodnôt je potrebné nastaviť dostatočný čas, kedy je možné dej po skrate považovať za ustálený, t.j. 1 s). V kolónke **Xopt** sa nastaví hodnota frekvencie 50, nakoľko je v zadaní viac hodnôt zadaných ako reaktancie (obr.5).

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad1b. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad1b.atp) (obr. 6). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 7). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 8).

V grafickom postprocesore je s označením v: XX0001A – uvedený požadovaný priebeh napätia na záťaži, t.j. napätie medzi uzlom A a zemou, v: XX0001B – priebeh napätia na záťaži, t.j. napätie medzi uzlom B a zemou, v: XX0001C – priebeh napätia na záťaži, t.j. napätie medzi uzlom C a zemou. Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie s napäťovou osou na ľavej strane a stlačením tlačidla **Plot** sa následne zobrazia. Podobne sú zobrazené prúdy, pričom prúdy je vhodné označovať pravým tlačidlom myši, aby ich prúdová os bola na pravej strane. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

🚰 MC's PlotXY - Data select	ion					. 🗆 🗙
Load Refresh	1			1		?
# File Name	# of var:	# of Point	Tmax			
priklad1b.pl4	7	1000001	1			
Variables	Θ	8	Res	et		Ð
t	Variable	е		Х	Facto	Offset
V:X0001A- v:X0001B-	t			x	1	0
v:X0001C-	v:X00	01A-			1	0
c:X0001A-	v: X00	01B-			1	0
c:X00016-	v: X00	01C-			1	0
	c:X00	01A-			1	0
	c:X00	01B-			1	0
	c:XOO	01C-			1	0
	Upda	te 😫	Foi	ır	P	lot

Obr. 9 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätí pred a po skrate (obr. 13).

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 11) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

Hodnoty pred skratom je možné určiť obdobným postupom, ako bolo uvedené v príkladoch na 2. cvičení (1-f obvody) v rozmedzí $t \in (0;0,1)$ s. Ustálené hodnoty po skrate

by bolo vhodné odčítať v čase ∞, ale v záložke ATP–Settings...–Simulation bola v kolónke zadaná hodnota v Tmax 1 s, preto postačuje, ak sa ustálené hodnoty po skrate odčítajú v blízkostí Tmax, t.j. čo najneskôr od vzniku skratu.

Obdobne sa postupuje pri zobrazení a odčítaní hodnôt prúdov pred a po skrate (obr. 13).

Výsledné hodnoty ustálených prúdov a napätí pred a po skrate:

• pred skratom:

$$\begin{split} \varphi_{UA} &= 360^{\circ} \cdot n - \frac{t_{A}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,0195}{0,02} \cdot 360^{\circ} = 9^{\circ}; \ \boldsymbol{U}_{Z,A} = 13,079 \cdot e^{j \cdot 9^{\circ}} \text{ V} \\ \varphi_{UB} &= 360^{\circ} \cdot n - \frac{t_{B}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,006167}{0,02} \cdot 360^{\circ} = 249^{\circ}; \ \boldsymbol{U}_{Z,B} = 13,079 \cdot e^{j \cdot 249^{\circ}} \text{ V} \\ \varphi_{UC} &= 360^{\circ} \cdot n - \frac{t_{C}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,012834}{0,02} \cdot 360^{\circ} = 129^{\circ}; \ \boldsymbol{U}_{Z,C} = 13,079 \cdot e^{j \cdot 129^{\circ}} \text{ V} \\ \varphi_{IA} &= 360^{\circ} \cdot n - \frac{t_{A}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,00085832}{0,02} \cdot 360^{\circ} = 344,55^{\circ}; \ \boldsymbol{I}_{Z,A} = 1082,4 \cdot e^{j \cdot 344,55^{\circ}} \text{ A} \\ \varphi_{IB} &= 360^{\circ} \cdot n - \frac{t_{B}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,007525}{0,02} \cdot 360^{\circ} = 224,55^{\circ}; \ \boldsymbol{I}_{Z,B} = 1082,4 \cdot e^{j \cdot 224,55^{\circ}} \text{ A} \\ \varphi_{IC} &= 360^{\circ} \cdot n - \frac{t_{C}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,014192}{0,02} \cdot 360^{\circ} = 104,55^{\circ}; \ \boldsymbol{I}_{Z,C} = 1082,4 \cdot e^{j \cdot 104,55^{\circ}} \text{ A} \end{split}$$

• po skrate:

$$\begin{split} \varphi_{UA} &= 360^{\circ} \cdot n - \frac{t_{A}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0.9995}{0.02} \cdot 360^{\circ} = 9^{\circ} ; \ \boldsymbol{U}_{Z,A} = 13,079 \cdot e^{j.9^{\circ}} \text{ V} \\ \varphi_{UB} &= 360^{\circ} \cdot n - \frac{t_{B}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{1}{0.02} \cdot 360^{\circ} = 0^{\circ} ; \ \boldsymbol{U}_{Z,B} = 0 \cdot e^{j.0^{\circ}} \text{ V} \\ \varphi_{UC} &= 360^{\circ} \cdot n - \frac{t_{C}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{1}{0.02} \cdot 360^{\circ} = 0^{\circ} ; \ \boldsymbol{U}_{Z,C} = 0 \cdot e^{j.0^{\circ}} \text{ V} \\ \varphi_{IA} &= 360^{\circ} \cdot n - \frac{t_{A}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 50 - \frac{0.98086}{0.02} \cdot 360^{\circ} = 344,34^{\circ} ; \ \boldsymbol{I}_{Z,A} = 1082,4 \cdot e^{j.344,34^{\circ}} \text{ A} \\ \varphi_{IB} &= 360^{\circ} \cdot n - \frac{t_{B}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{1}{0.02} \cdot 360^{\circ} = 0^{\circ} ; \ \boldsymbol{I}_{Z,B} = 0 \cdot e^{j.0^{\circ}} \text{ A} \\ \varphi_{IC} &= 360^{\circ} \cdot n - \frac{t_{C}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot n - \frac{1}{0.02} \cdot 360^{\circ} = 0^{\circ} ; \ \boldsymbol{I}_{Z,C} = 0 \cdot e^{j.0^{\circ}} \text{ A} \end{split}$$

Príklad 3

... pripravujú sa ďalšie príklady na 3-fázové obvody ...