Príklad 1

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_x v tvare: $u(t) = U_{max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u(t) = U_{max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, C = 0,124 mF, $U_{max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/4 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrických obvodov

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –45 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/4 \cdot \pi - 90^\circ = 45^\circ - 90^\circ = -45^\circ$) a frekvenciu v položke **f** 50.

Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.3). Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1) a 2000 (pri rezistore R_2) (obr. 4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Component: AC1PH.SUP	Component: CAP_RS.SUP
Attributes	Attributes
DATA VALUE Amp. 100 f 50 Pha .45 A1 0 TSta .1 TSto 1	DATA VALUE C 124 Ks 0 To 1
Order: 0 Label: U	Order: 0 Labet C
Comment:	Comment
Current ☐ Hige C Current ☐ Lock	Dutput 0-No Hide 10-No Lock SVintage,1
#	

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a kondenzátor C

Component: RESISTOR.SUP		×	Component: RESIS	TOR.SUP			×
Attributes			Attributes				
DATA VALUE	NODE PHASE	NAME	DATA	VALUE	NODE	PHASE	NAME
RES 1000	From 1	XX0001	RES	2000	From	1	
	To 1	XX0003			To	1	××0003
Order: 0	Label: R1		Order: 0			Label: R2	
Comment:			Comment:				
- 0.454			- 0.44				
Gupu		□ Hi <u>d</u> e	oupu				🗆 Hi <u>d</u> e
0 - No		🗖 Lock	0 - No	•			🗖 Lock
		□ \$Vintage,1	· · · · ·				□ \$Vintage,1
						1	
<u></u>	<u><u>C</u>ancel</u>	Help		!	<u>D</u> K	<u>C</u> ancel	Help

Obr. 4 Nastavenie parametrov rezistorov $R_1 a R_2$

Open Probe	×
Phases © 1	OK)
C 3	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla, napr. UZOLA (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 🗟
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
rup ATP (file)	Chrl+Alt+2
rannin (noy	Contracte
run PlotXY	Ctrl+Alt+3
run PlotXY Edit Text	Ctrl+Alt+3 Ctrl+Alt+4

Obr. 7 *ATP* – *Settings*

4TP Settin	gs		×
Simulation	Output Switch	/UM Format Record Variables	
<u>d</u> elta T: <u>I</u> max: ⊻opt: <u>C</u> opt:	1E-7 0.04 0 0	Simulation type Time domain Frequency <u>s</u> can <u>H</u> armonic (HFS)	
⊻opt: <u>C</u> opt:	0	C Frequency <u>s</u> can C <u>H</u> armonic (HFS)	
		<u>Power Frequency</u>	

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad1. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad1.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA – uvedený požadovaný priebeh napätia $u_{x,a}$ (t.j. napätie medzi uzlom UZOLA a zemou; zem nemá v ATPDraw značenie) v: UZOLB – priebeh úbytku napätia $u_{x,b}$ (t.j. napätie medzi uzlom UZOLB a zemou). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

🚰 MC's PlotXY - Data select	ion					- 🗆 ×
Load Refresh			•	1		?
# File Name	# of ∨ar	# of Point	Tmax			
priklad1.pl4	3	400001	0,04			
Variables	Θ	8	Res	et		+
t	Variabl	e		Х	Facto	Offset
V:UZOLA V:UZOLB	t			x	1	0
	v: UZO	LA			1	0
	v: UZO	LB			1	0
	Upda	te 😫	Fot	ır	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA a zemou (obr. 13).

Obr. 13 Zobrazenie priebehu napätia uxa)

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark	Сору	Print
0	br. 15 Tlačidlo	Manual Sco	ale		
5 1	MC's PlotXY - Manual Scaling		×I		
	Y-Axis	Right-Y Axis			
	Max 3	Max inactive			
	Min -3	Min inactive			
[X-Axis				
	Min 0	Max 0.04			
	I Exact	Match			
	Cancel	OK			

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

🖌 📑 🗖	Mark	Сору	Print
<i>Obr. 1</i>	7 Tlačidlo Show Cursor		

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 2,5651 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{7,3759 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 317,2^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0.022378 s a amplitúda – červenou farbou; $u_{\rm x} = 4,3736.10^{-6}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,022378}{0,02} \cdot 360^{\circ} = 317,196$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA a zemou je: $u_{x,a} = 2,565 \cdot e^{j317,2^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri l'ubovol'nom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

	Mark Copy Print
Obr. 24 Th	ačidlo Manual Scale
Y-Axis	Right-Y Axis
Max 70	Max inactive
Min -70	Min inactive
X-Axis	
Min 0	Max 0,04
	F Exact Match
Cancel	OK

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 66,664 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{2,4728 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 405,5^{\circ} \approx 45,5^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360 \rangle$, preto bolo potrebné od uhla 405,5° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,017473 s a amplitúda – červenou farbou; $u_x = 7,5841.10^{-4}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0.017473}{0.02} \cdot 360^{\circ} \cong 45.5^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB a zemou je: $u_{x,b} = 66,664 \cdot e^{j45,5^{\circ}}$ V.

Výsledky:

a)
$$u_{x,a} = 2,565 \cdot e^{j317,2^{\circ}}$$
 V

b)
$$u_{x,b} = 66,664 \cdot e^{j45,5^{\circ}}$$
 V

Príklad 2

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_x v tvare: $u(t) = U_{max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u(t) = U_{max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, L = 1,041 H, $U_{max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/3 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –30 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/3 \cdot \pi - 90^\circ = 60^\circ - 90^\circ = -30^\circ$) a frekvenciu v položke **f** 50.

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry) (obr.3). Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1) a 2000 (pri rezistore R_2) (obr. 4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Component: AC1PH.SUP			×	Componen	t: IND_RP.SUP			
Attributes				Attributes				
DATA VALUE Amp. 100 f 50 Pha -30 A1 0 TSta -1 TSto 1		PHASE 1	NAME	DATA L Kp	VALUE 1041 0	From To	PHASE NAME 1 1 1	
Order: 0	,	Label: U		, Orc	er: 0	,	Label:	_
Comment:				Comme	nt			
Type of source C Current C Voltage			☐ Hige ☐ Look	Output -	- No		☐ Hige ☐ Lock ☐ \$Vintage,1	1
₩Ŏ-	<u>D</u> K	<u>C</u> ancel	Help		[<u>o</u> k	Cancel Help	

Obr. 2 Schémy zapojenia elektrického obvodu

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a cievky L

Component: RESISTOR.SUP	Component: RESISTOR.SUP
Attributes	Attributes
DATA VALUE RES 1000 From 1 To 1	DATA VALUE RES 2000 From 1 To 1
Order: 0 Labet R1	Order: 0 Labet R2
Output 0.No Image: Look 1 \$Vintage,1	Output Output If Hige D - No If brock SVintage,1
	-///- <u>QK</u> <u>Cancel Help</u>

Obr. 4 Nastavenie parametrov rezistorov $R_1 a R_2$

Open Probe		×
Phases 1	⊠ ≙ ⊏ в	[0K]
O 3	Πg	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla veľkými písmenami, napr. UZOLA (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 🕏
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Obr. 7 *ATP* – *Settings*

ATP Setting	gs	×
Simulation	Output Switch/UM Format Record Variables	
<u>d</u> elta T: <u>I</u> max: ⊻opt: <u>C</u> opt:	1E-7 Simulation type 0.04 C Tige domain 0 C Frequency scan 0 C Harmonic (HFS)	
<u> </u>	Help	

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty Xopt a Copt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad2. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad2.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA – uvedený požadovaný priebeh napätia $u_{x,a}$ (t.j. napätie medzi uzlom UZOLA a zemou; zem nemá v ATPDraw značenie) v: UZOLB – priebeh napätia $u_{x,b}$ (t.j. napätie medzi uzlom UZOLB a zemou). Stlačením l'avého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. **Poznámka:** čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data selection							
Load Refresh					1		?
# File Name	# of	var	# of Point	Tmax			
priklad2.pl4	3		400001	0,04			
Variables	€	Θ	8	Res	et		Ð
t	Var	riabl	e		X	Facto	Offset
V:UZOLA V:UZOLB	t				x	1	0
	v:	uzo	LA			1	0
	v:	uzo	LB			1	0
	L						
	L						
	U	pda	te 📑	Fot	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA a zemou (obr. 13).

Obr. 13 Zobrazenie priebehu napätia uxa)

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

	Mark Copy Print
Obr. 15 Tlačidle	o Manual Scale
Y-Axis	Right-Y Axis
Max 70	Max inactive
Min -70	Min inactive
X-Axis	
Min 0	Max 0,04
	Match
Cancel	OK

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr.	17 Tlačidlo Show Cursor		

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 67,154 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{1,4963 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 423,07^{\circ} \approx 63,07$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360 \rangle$, preto bolo potrebné od uhla 423,07° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,016496 s a amplitúda – červenou farbou; $u_x = -1,4336.10^{-3}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.016496}{0.02} \cdot 360^{\circ} = 63.07$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA a zemou je: $u_{x,a} = 67,154 \cdot e^{j63^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

		1	Mark Copy Print
0	Obr. 24 Tlačidlo	o Manual Scal	le
	MC's PlotXX - Manual Scaling		il.
	Y-Axis	Right-Y Axis	
	Max 100	Max inactive	
	Min -100	Min inactive	
	X-Axis		
	Min 0	Max 0,04	
	⊠ Exact	Match	
	Cancel	OK	

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 94,458 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{2,1123 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 411,98^{\circ} \approx 51,98^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360 \rangle$, preto bolo potrebné od uhla 411,98° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,017473 s a amplitúda – červenou farbou; $u_x = 7,5841.10^{-4}$ V).

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0.017112}{0.02} \cdot 360^{\circ} \cong 51.98^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB a zemou je: $u_{x,b} = 94,458 \cdot e^{j51,98^{\circ}}$ V.

Výsledky:

- a) $u_{x,a} = 67,154 \cdot e^{j63^{\circ}}$ V
- b) $u_{x,b} = 94,458 \cdot e^{j51,98^{\circ}}$ V

Príklad 3

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme prúdy i_x v tvare: $i(t) = I_{max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $i(t) = I_{max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, L = 1,041 H, $C = 124 \mu\text{F}$, $I_{max} = 1,12 \text{ A}$, f = 50 Hz, $\varphi = 1/3 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na prúdovom zdroji I sa nastaví maximálna hodnota prúdu zdroja v položke **Amp** 1,12. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály prúdový zdroj počas doby 1 sekundy. V položke **Type of source** sa zvolí voľba **Current**. Fázové natočenie sa zadá v položke **Pha** –30 (pretože implicitné nastavenie prúdového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/3 \cdot \pi - 90^\circ = 60^\circ - 90^\circ = -30^\circ$) a frekvenciu v položke **f** 50.

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.3). Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1) a 2000 (pri rezistore R_2) (obr. 4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schémy zapojenia elektrického obvodu

Obr. 3 Nastavenie parametrov pre prúdový zdroj I, cievky L a kondenzátora C

Component: RESISTOR.SUP	Component: RESISTOR.SUP
Attributes	<u>Attributes</u>
DATA VALUE RES 1000 From 1 To 1	DATA VALUE NODE PHASE NAME RES 2000 From 1 To 1
Order: 0 Labet R1	Order. 0 Labet F2
Comment:	Comment:
Output O ·No	Output Image: High particular state st
	-///- <u>QK</u> <u>Cancel</u> <u>Help</u>

Obr. 4 Nastavenie parametrov rezistorov $R_1 a R_2$

Open Probe		×
Phases • 1	⊠ A ⊟ B	OK)
03	Πg	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla veľkými písmenami, napr. UZOLA1 a UZOLA2 (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB1 a UZOLB2 (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3 N
run ATP	F2 13
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Simulation Output	Switch/UM Format Record Variables
delta T: 1E-7 <u>T</u> max: 0.04 ⊻opt: 0 Cont: 0	Simulation type Time domain Frequency scan Harmonic (HFS)
<u>C</u> opt: 0	
	<u> </u>

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre <u>X</u>opt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad3. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad3.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením c: UZOLA1 – UZOLA2 uvedený požadovaný priebeh prúdu $i_{x,a}$ (t.j. prúd vo vetve s uzlami UZOLA1 a UZOLA2) c: UZOLB1 – UZOLB2 priebeh prúdu $i_{x,b}$ (t.j. prúd vo vetve s uzlami UZOLB1 a UZOLB2). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty prúdu medzi uzlom UZOLA1 a UZOLA2 (obr. 13).

Pre odčítanie maximálnej hodnoty prúdu postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

🞇 MC's PlotXY - Manual Scaling	
Y-Axis	Right-Y Axis
Max 1.2	Max inactive
Min -1,2	Min inactive
X-Axis	
Min 0	Max 0,04
Exact 1	Match
Cancel	OK

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota prúdu je 1,1199 A. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{1,6253 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 420,75^{\circ} \approx 60,75^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360 \rangle$, preto bolo potrebné od uhla 420,75° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,016626 s a amplitúda – červenou farbou; $i_x = -4,7828.10^{-6}$ A).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.016626}{0.02} \cdot 360^{\circ} = 60.73^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis prúdu medzi uzlom UZOLA1 a UZOLA2 je: $i_{x.a} = 1,1199 \cdot e^{j60.7^{\circ}}$ A

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt prúdu medzi uzlom UZOLB1 a UZOLB2 sa uskutoční z obr. 22.

Obr. 22 Zobrazenie priebehu prúdu i_{xb)}

Pre odčítanie maximálnej hodnoty prúdu postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

⊥] Dbr. 24 Tlačidlo	o Manual Sca	Mark Copy Print
MC's PlotXY - Manual Scaling Y-Axis Max 0,4	_□]× Right-Y Axis Max inactive	
Min -0,4 X-Axis Min 0	Min inactive	
Cancel	Match)	

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr. 26 Tlačidlo Show Curse	or –		

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota prúdu je 0,37113 A. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{2,0117 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 413,79^{\circ} \approx 53,79^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360 \rangle$, preto bolo potrebné od uhla 413,79° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu prúdu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,017012 s a amplitúda – červenou farbou; $i_x = -2,1165.10^{-7}$ A).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0.017012}{0.02} \cdot 360^{\circ} \cong 53.78^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis prúdu medzi uzlom UZOLB1 a UZOLB2 je: $i_{x,b} = 0.37113 \cdot e^{j53.8^{\circ}}$ A.

Výsledky:

a)
$$i_{x,a} = 1,1199 \cdot e^{j60,7^{\circ}}$$
 A

b) $i_{x,b} = 0,37113 \cdot e^{j53,8^{\circ}}$ A

Príklad 4

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_x v tvare: $u(t) = U_{max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u(t) = U_{max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, L = 1,041 H, $C = 124 \mu\text{F}$, $U_{max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/3 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –30 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/3 \cdot \pi - 90^\circ = 60^\circ - 90^\circ = -30^\circ$) a frekvenciu v položke **f** 50.

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.3). Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1) a 2000 (pri rezistore R_2) (obr. 4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 3 Nastavenie parametrov pre napäťový zdroj U, cievky L a kondenzátora C

Component: RESISTOR.SUP	Component: RESISTOR.SUP
Attributes	Attributes
DATA VALUE RES 1000 From 1 To 1	DATA VALUE NODE PHASE NAME RES 2000 From 1 To 1
Order: 0 Labet R1	Order: 0 Labet R2
Comment:	Comment:
Output Output I Hige Look Sintage,1	Output Image: High particular partic

Obr. 4 Nastavenie parametrov rezistorov $R_1 a R_2$

Open Probe		×
Phases © 1		(COK)
O 3	Πg	Help

Obr. 5 Nastavenie parametrov voltmetra (Probe Branch volt.)

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla veľkými písmenami, napr. UZOLA1 a UZOLA2 (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB1 a UZOLB2 (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 🗟
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Simulation Output	Switch/UM Format Record Variables
<u>d</u> elta T: 1E-7 <u>I</u> max: 0.04 ≚opt: 0 <u>C</u> opt: 0	Simulation type Time domain C Frequency scan C Harmonic (HFS)
Cobr. 10	Power Frequency

Obr. 7 ATP – Settings

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre <u>X</u>opt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad4. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad4.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA1 – UZOLA2 uvedený požadovaný priebeh napätia $u_{x,a}$ (t.j. napätie medzi uzlom UZOLA1 a UZOLA2) v: UZOLB1 – UZOLB2 priebeh napätia $u_{x,b}$ (t.j. napätie medzi uzlom UZOLB1 a UZOLB2). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA1 a UZOLA2 (obr. 13).

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

MC's PlotXY - Manual Scaling				
Y-Axis	-Right-Y Axis			
Max 100	Max inactive			
Min -100	Min inactive			
X-Axis				
Min 0	Max 0,04			
Exact Match				
Cancel	OK			

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 94,639 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,012632 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 222,624^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 7,6319.10^{-3}$ s a amplitúda – červenou farbou; $u_x = -4,3724.10^{-4}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{7,6319 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} = 222,5^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ . Výsledný zápis napätia medzi uzlom UZOLA1 a UZOLA2 je: $u_{x,a} = 94,639 \cdot e^{j222,5^{\circ}}$ V Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB1 a UZOLB2 sa uskutoční z obr. 22.

Obr. 22 *Zobrazenie priebehu napätia u*_{xb})

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri l'ubovol'nom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zl'ava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice x-ovej a y-ovej osi pre zobrazenie priebehov.

			Mark Copy	Print
(Obr. 24 Tlačidlo	o Manual Sco	ule	
	MC's PlotXY - Manual Scaling		×	
	Y-Axis	Right-Y Axis		
	Max 80	Max inactive		
	Min -80	Min inactive		
	X-Axis			
	Min 0	Max 0,04		
	Exac	t Match		
	Cancel	OK		

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr. 26 Tlačidlo Show Cur	sor		

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 75,184 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,011667 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 239,99$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 6,6664.10^{-3}$ s a amplitúda – červenou farbou; $u_x = 7,8942.10^{-4}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{6,6667 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} \cong 240^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB1 a UZOLB2 je: $u_{x.b} = 75,184 \cdot e^{j240^{\circ}}$ V.

Výsledky:

a) $u_{x,a} = 94,639 \cdot e^{j222,5^{\circ}}$ V

b) $u_{x,b} = 75,184 \cdot e^{j240^{\circ}}$ V
Príklad 5

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_2 v tvare: $u_2(t) = U_{2\max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u_2(t) = U_{2\max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R = 1 \text{ k}\Omega$, L = 1,041 H, $C = 124 \mu\text{F}$, $U_{\max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/4 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –45 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/4 \cdot \pi - 90^\circ = 45^\circ - 90^\circ = -45^\circ$) a frekvenciu v položke **f** 50. Pri rezistore bude do **RES** zapísaná hodnota 1000 (obr. 3).

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schémy zapojenia elektrického obvodu

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a rezistora R

Component: IND_RP.SUP	X Component: CAP_RS.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME L 1041 From 1 Kp 0 To 1	DATA VALUE NODE PHASE NAME C 124 From 1 To 1 K\$ 0 To 1 To 1
Order. 0 Label L	Order: 0 Labelt C
Comment	Comment
Output U-No SVintage,1	Output Output I Hige Look SVintage,1
77774	QK Cancel Help

Obr. 4 Nastavenie parametrov cievky L a kondenzátora C

Open Probe	×
Phases PA	OK
	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné l'ahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke To: sa zadá názov uzla veľkými písmenami, napr. UZOLA (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou ATP Settings a záložka Simulation (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. delta T 1E-7 s a doba výpočtu T max 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 💦
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Obr. 7 *ATP* – *Settings*

ATP Settin	igs	×
Simulation	Output Switch/UM Format Record Variables	
<u>d</u> elta T: ⊥max: ⊻opt: ⊆opt:	Simulation type 0.04 © Time domain 0 C Frequency scan 0 C Harmonic (HFS)	
<u>C</u> opt:	C Harmonic (HFS) Eower Frequency	
<u></u> K	Help	_

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty Xopt a Copt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad5. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad5.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA – uvedený požadovaný priebeh napätia $u_{2,a}$ (t.j. napätie medzi uzlom UZOLA a zemou; zem nemá v ATPDraw značenie) v: UZOLB – priebeh napätia $u_{2,b}$ (t.j. napätie medzi uzlom UZOLB a zemou). Stlačením l'avého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. **Poznámka:** čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data select	ion						. 🗆 🗵
Load Refresh					1		?
# File Name	# of	var	# of Point	Tmax			
priklad5.pl4	3		400001	0,04			
Variables	€	Θ	8	Res	et		Ð
t	Var	riabl	e		X	Facto	Offset
V:UZOLA V:UZOLB	t				x	1	0
	v:	uzo	LA			1	0
	v:	uzo	LB			1	0
	L						
	L						
	U	pda	te 📑	Fot	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA a zemou (obr. 13).

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

	15 Tlačidl	o Manual Sci	Mark Copy	Print
	I J I LUCLUU		×	
Y-Axi	S	Right-Y Axis		
Max	3	Max inactive		
Min	-3	Min inactive		
X-Axi	6			
	Min 0	Max 0,04		
	🔽 Exac	t Match		
C	ancel	OK		

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr. 17 Tlačidlo Show Curse	or		

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 2,5611 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{7,255 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 319,41^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 2,2552.10^{-3}$ s a amplitúda – červenou farbou; $u_2 = 7,8071.10^{-6}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{2,2552 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} = 319,41^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA a zemou je: $u_{2,a} = 2,5611 \cdot e^{j319,4^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark Copy Print
Obr.	24 Tlačidlo	o Manual Sca	le
I MC's	PlotXY - Manual Scaling	_ (□)	</th
Y-Ax	s	Right-Y Axis	1
Max	3	Max inactive	
Min	-3	Min inactive	
X-Axi	s		
	Min 0	Max 0,04	
	▼ Exact	Match	
	ancel	OK	

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 2,4555 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{8,3495 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 299,71^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 3,3495.10^{-3}$ s a amplitúda – červenou farbou; $u_2 = -9,1475.10^{-6}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{3,3495 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} \cong 299,71^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB a zemou je: $u_{2,b} = 2,4555 \cdot e^{j299,7^{\circ}}$ V.

Výsledky:

- a) $u_{2,a} = 2,5611 \cdot e^{j319,4^\circ}$ V
- b) $u_{2,b} = 2,4555 \cdot e^{j299,7^{\circ}}$ V

Príklad 6

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_2 v tvare: $u_2(t) = U_{2\max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u_2(t) = U_{2\max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R = 1 \text{ k}\Omega$, L = 1,041 H, $C = 124 \mu\text{F}$, $U_{\max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/4 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –45 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/4 \cdot \pi - 90^\circ = 45^\circ - 90^\circ = -45^\circ$) a frekvenciu v položke **f** 50. Pri rezistore bude do **RES** zapísaná hodnota 1000 (obr. 3).

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schémy zapojenia elektrického obvodu

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a rezistora R

Component: IND_RP.SUP X	Component: CAP_RS.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME	DATA VALUE NODE PHASE NAME
L 1041 From 1	C 124 From 1
Kp 0 To 1	
Order: 0 Labet	Order: 0 Labet C
Comment	Comment
Output	Output Tide
↓ ¥Vintage, I	\$Vintage, I
QKHelp	<u> </u>

Obr. 4 Nastavenie parametrov cievky L a kondenzátora C

Open Probe	×
Phases	(OK)
	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné l'ahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke To: sa zadá názov uzla veľkými písmenami, napr. UZOLA (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou ATP Settings a záložka Simulation (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. delta T 1E-7 s a doba výpočtu T max 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 🕏
Edit ATP-file	F4
Edit LIS-file	F5
Make File As Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Obr. 7 *ATP* – *Settings*

Simulation Output Switch/	'UM Format Record Variables
delta T: 1E-7 Imax: 0.04 ⊠opt: 0 <u>C</u> opt: 0	Simulation type Time domain Frequency scan Harmonic (HFS)
Pobe lo	<u>Power Frequency</u>

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty Xopt a Copt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad6. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad6.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA – uvedený požadovaný priebeh napätia $u_{2,a}$ (t.j. napätie medzi uzlom UZOLA a zemou; zem nemá v ATPDraw značenie) v: UZOLB – priebeh napätia $u_{2,b}$ (t.j. napätie medzi uzlom UZOLB a zemou). Stlačením l'avého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data select	ion						. 🗆 🗙
Load Refresh]			•	1		?
# File Name	# of ∨	/ar	# of Point	Tmax			
priklad6.pl4	3		400001	0,04			
Variables	⊕ (Θ	8	Res	et		Ð
t	Varia	able	;		Х	Facto	Offset
V:UZOLA V:UZOLB	t				x	1	0
	v: U2	zoi	iA.			1	0
	v: U2	zoi	ЪB			1	0
	Upo	dat	e 😫	Fou	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA a zemou (obr. 13).

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

		١	/lark Copy	Print
(Obr. 15 Tlačidlo	o Manual Scal	e	
	MC's PlotXY - Manual Scaling		1	
	Y-Axis	Right-Y Axis		
	Max 0,07	Max inactive		
	Min -0,07	Min inactive		
	X-Axis			
	Min 0	Max 0,04		
	✓ Exact	Match		
	Cancel	OK		

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr. 17 Tlačidlo Show Curs	or		

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 0,065744 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,012255 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 229,41^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 7,2552.10^{-3}$ s a amplitúda – červenou farbou; $u_2 = 2,004.10^{-7}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{7,2552 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} = 229,41^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA a zemou je: $u_{2,a} = 0,06574 \cdot e^{j229,41^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark Copy Print
(Obr. 24 Tlačidlo	o Manual Sca	le
			al .
	Y-Axis	Right-Y Axis	1
	Max 9	Max inactive	
	Min -9	Min inactive	
	X-Axis		
	Min JU	Max 10,04	
	✓ Exact	t Match	
	Cancel	OK	

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 8,0618 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,01515 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 177,3^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,01015 s a amplitúda – červenou farbou; $u_2 = 5,961.10^{-5}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0.01015}{0.02} \cdot 360^{\circ} \cong 177.3^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB a zemou je: $u_{2,b} = 8,0618 \cdot e^{j177,3^{\circ}}$ V.

Výsledky:

a)
$$u_{2,a} = 0,06574 \cdot e^{j229,41^{\circ}}$$
 V

b) $u_{2,b)} = 8,0618 \cdot e^{j177,3^{\circ}} \text{ V}$

Príklad 7

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_2 v tvare: $u_2(t) = U_{2\max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u_2(t) = U_{2\max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R = 1 \text{ k}\Omega$, L = 1,041 H, $C = 124 \mu\text{F}$, $U_{\max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/6 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –60 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/6 \cdot \pi - 90^\circ = 30^\circ - 90^\circ = -60^\circ$) a frekvenciu v položke **f** 50. Pri rezistore bude do **RES** zapísaná hodnota 1000 (obr. 3).

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Obr. 2 Schémy zapojenia elektrického obvodu

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a rezistora R

Component: IND_RP.SUP	X Component: CAP_R5.5UP
Attributes	Attributes
DATA VALUE NODE PHASE NAME L 1041 From 1 To To	DATA VALUE NODE PHASE NAME C 124 From 1 To To
Order: 0 Labet L	Order: 0 Labet C
Comment:	Comment:
Output U-No SVintage,1	Dutput Dutput Dutput U-No Update Dutput Update Update SVintage,1
-mmKeancelHelp	

Obr. 4 Nastavenie parametrov cievky L a kondenzátora C

Open Probe		×
Phases • 1	⊠ A ⊟ B	OK)
03	Πg	<u>H</u> elp

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné l'ahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke To: sa zadá názov uzla veľkými písmenami, napr. UZOLA (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou ATP Settings a záložka Simulation (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. delta T 1E-7 s a doba výpočtu T max 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Settings	F3
run ATP	F2 😽
Edit ATP-file	F4
Edit LIS-file	F5
Make File As	
Make Names	
Find node	F6
Find next	F7
Line Check (group)	
Edit Commands	
run ATP	Ctrl+Alt+0
run PCPlot	Ctrl+Alt+1
run ATP (file)	Ctrl+Alt+2
run PlotXY	Ctrl+Alt+3
Edit Text	Ctrl+Alt+4

Obr. 7 *ATP* – *Settings*

ATP Settin	gs	×
Simulation	Output Switch/UM Format Record Variables	
<u>d</u> elta T: <u>I</u> max: ⊻opt: <u>C</u> opt:	1E-7 Simulation type 0.04 © Time domain 0 C Frequency scan 0 C Harmonic (HFS)	
<u>C</u> opt:	<u>Power Frequency</u>	
<u>0</u> K	Help	

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty Xopt a Copt platí:

Pre Xopt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad7. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad7.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA – uvedený požadovaný priebeh napätia $u_{2,a}$ (t.j. napätie medzi uzlom UZOLA a zemou; zem nemá v ATPDraw značenie) v: UZOLB – priebeh napätia $u_{2,b}$ (t.j. napätie medzi uzlom UZOLB a zemou). Stlačením l'avého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data select	ion						. 🗆 🗵
Load Refresh					1		?
# File Name	# of	var	# of Point	Tmax			
priklad7.pl4	3		400001	0,04			
Variables	€	Θ	8	Res	et		Ð
t	Var	riabl	e		X	Facto	Offset
V:UZOLA V:UZOLB	t				x	1	0
	v:	uzo	LA			1	0
	v:	uzo	LB			1	0
	L						
	L						
	U	pda	te 📑	Fot	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA a zemou (obr. 13).

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

		1	vlark Copy	Print
0	Dbr. 15 Tlačidlo	o Manual Scal	le	
	🞇 MC's PlotXY - Manual Scaling			
	Y-Axis	Right-Y Axis		
	Max 30	Max inactive		
	Min -30	Min inactive		
	X-Axis			
	Min 0	Max 0,04		
	✓ Exact	Match		
	Cancel	OK		

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

	Mark	Сору	Print
Obr. 17 Tlačidlo Show Curs	sor		

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 27,525 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,020106 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 88,09^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,015107 s a amplitúda – červenou farbou; $u_2 = -3,088.10^{-4}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.015107}{0.02} \cdot 360^{\circ} = 88.07^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA a zemou je: $u_{2,a} = 27,525 \cdot e^{j88,1^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Obr. 22 *Zobrazenie priebehu napätia* $u_{2,b}$

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri l'ubovol'nom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark Co	py Print
Obr. 2	4 Tlačidlo	Manual Sca	ıle	
認iwe's pis			×1	
Y-Axis		-Right-Y Axis		
Max	100	Max inactive		
Min	-100	Min inactive		
X-Axis				
M	in 0	Max 0,04		
	Exact N	Match		
Car	ncel	OK		

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 95,657 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{4,1812 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 374,74^{\circ} \approx 14,74^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360^{\circ} \rangle$, preto bolo potrebné od uhla 374,74° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,019183 s a amplitúda – červenou farbou; $u_2 = 1,6471.10^{-3}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0,019183}{0,02} \cdot 360^{\circ} \cong 14,71^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB a zemou je: $u_{2,b} = 95,657 \cdot e^{j14,7^{\circ}}$ V.

Výsledky:

a)
$$u_{2,a} = 27,525 \cdot e^{j88,1^{\circ}}$$
 V

b) $u_{2,b} = 95,657 \cdot e^{j14,7^{\circ}}$ V

Príklad 8

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_2 v tvare: $u_2(t) = U_{2\max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u_2(t) = U_{2\max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, L = 1,041 H, $C = C_1 = C_2 = 124 \mu\text{F}$, $U_{\max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/3 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –30 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/3 \cdot \pi - 90^\circ = 60^\circ - 90^\circ = -30^\circ$) a frekvenciu v položke **f** 50. Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1), 2000 (pri rezistore R_2), 3000 (pri rezistore R_3) a 4000 (pri rezistore R_4) (obr. 3).

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Component: AC1PH.SUP	Component: RESISTOR.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME Amp. 100 1	DATA VALUE RES 1000 NODE PHASE NAME From 1 To 1
Order: 0 Labet: U	Order: 0 Labet: R1
Comment	Comment
Type of source Hige	Output Output Output U-No SVintage,1
40- <u>DK</u> <u>Cancel Help</u>	

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a rezistora R_1

Component: IND_RP.SUP	Component: CAP_R5.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME L 1041 From 1 To	DATA VALUE NODE PHASE NAME C 124 From 1 Ks 0 To 1
Order. 0 Labet L	Order: 0 Labet C
Comment	Comment
Output Image: High state	Output Image: Hige 0 - No Image: Look 1 \$Vintage: 1
QKHelp	QK Cancel Help

Obr. 4 Nastavenie parametrov cievky L a kondenzátora C

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla veľkými písmenami, napr. UZOLA1 a UZOLA2 (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB1 a UZOLB2 (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

ATP Settings

		Simulation Output Switch/UM Format Record Variables
Settings	F3	deka 1: 1E.7 Simulation type Imax: 0.04 ☞ Time domain
Edit ATP-file Edit LIS-file	F4 F5	⊻opt: 0 C Frequency scan <u>C</u> opt: 0 C Hamonic (HFS)
Make File As Make Names		Dower Frequency
Find node	F6	
Find next	F7	
Line Check (group)		
Edit Commands		
run ATP	Ctrl+Alt+0	
run PCPlot	Ctrl+Alt+1	
run ATP (file)	Ctrl+Alt+2	
run PlotXY	Ctrl+Alt+3	
Edit Text	Ctrl+Alt+4	

Obr. 7 *ATP* – *Settings*

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre <u>X</u>opt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad8. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad8.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

×

V grafickom postprocesore je s označením v: UZOLA1 – UZOLA2 uvedený požadovaný priebeh napätia $u_{2,a}$ (t.j. napätie medzi uzlom UZOLA1 a UZOLA2) v: UZOLB1 – UZOLB2 priebeh napätia $u_{2,b}$ (t.j. napätie medzi uzlom UZOLB1 a UZOLB2). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla Plot sa následne zobrazia. Poznámka: čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data select	ion					
Load Refresh]			1		?
# File Name	# of var	# of Point	Tmax			
priklad8.pl4	3	400001	0,04			
Variables	Θ	8	Res	et		H
t	Variabl	е		Х	Facto	Offset
v:UZOLA1-UZOLA2 v:UZOLB1-UZOLB2	t			x	1	0
	v: UZO	LA1-UZO	LA2		1	0
	v: U20	LB1-UZO	LB2		1	0
	Upda	te 📑	Fol	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA1 a UZOLA2 (obr. 13).

*Obr. 13 Zobrazenie priebehu napätia u*_{2,a)}

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri l'ubovol'nom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark Copy Print
Ol	or. 15 Tlačidlo	o Manual Sca	le
ba	MC ¹ c DioFYV Manual Cealing		1
	Y-Axis	Right-Y Axis	
	Max 1,5	Max inactive	
	Min -1,5	Min inactive	
r'	<-Axis		
	Min J0	Max 0,04	
	🗷 Exact	Match	
	Cancel	OK	

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 1,283 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0,016544 - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 152,21^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,011544 s a amplitúda – červenou farbou; $u_2 = -8,3592.10^{-6}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.011544}{0.02} \cdot 360^{\circ} = 152,21^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA1 a UZOLA2 je: $u_{2,a} = 1,283 \cdot e^{j152,2^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

Obr. 22 *Zobrazenie priebehu napätia* $u_{2,b}$

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

□□ Obr. 24 Tlačidlo	o Manual Sca	Mark Copy I <i>le</i>	Print
MC's PlotXY - Manual Scaling Y-Axis Max 60 Min 60	Right-Y Axis Max inactive Min inactive	×	
Min 0 F Exact Cancel	Max 0,04 Match		

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 56,92 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{1,6721 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 419,9^{\circ} \approx 59,9^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$. Fázové natočenie je zvykom uvádzať v rozmedzí $\varphi \in \langle 0^{\circ}; 360^{\circ} \rangle$, preto bolo potrebné od uhla 419,9° odčítať 360°.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; t = 0,016672 s a amplitúda – červenou farbou; $u_2 = 4,6809.10^{-5}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{0.016672}{0.02} \cdot 360^{\circ} \cong 59.9^{\circ}$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB1 a UZOLB2 je: $u_{2,b} = 56,92 \cdot e^{j59,9^{\circ}}$ V.

Výsledky:

a)
$$u_{2,a} = 1,283 \cdot e^{j152,2^{\circ}} V$$

b)
$$u_{2,b} = 56,92 \cdot e^{j59,9^{\circ}}$$
 V
Príklad 9

Podľa schémy zapojenia na obr. 1a a obr. 1b určte prostredníctvom programu ATPDraw neznáme napätie u_2 v tvare: $u_2(t) = U_{2\max} \cdot \sin(j \cdot \omega \cdot t + \varphi)$ alebo $u_2(t) = U_{2\max} \cdot e^{j \cdot \varphi}$, ak viete, že: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, L = 1,041 H, $C = C_1 = C_2 = 124 \mu\text{F}$, $U_{\max} = 100 \text{ V}$, f = 50 Hz, $\varphi = 1/3 \cdot \pi$.

Obr. 1 Schémy zapojenia elektrického obvodu

Riešenie

V ATPDraw sa vytvoria schémy zapojenia podľa obr. 2a a obr. 2b.

Na napäťovom zdroji U sa nastaví maximálna hodnota napätia zdroja v položke **Amp** 100. V položke **Tsta** sa nastaví hodnota –1 a **Tsto** hodnota 1, čo má za následok stály napäťový zdroj počas doby 1 sekundy. V položke **Type of source** sa ponechá voľba **Voltage**. Fázové natočenie sa zadá v položke **Pha** –30 (pretože implicitné nastavenie napäťového zdroja predpokladá kosínusový zdroj, t.j. $\varphi - 90^\circ = 1/3 \cdot \pi - 90^\circ = 60^\circ - 90^\circ = -30^\circ$) a frekvenciu v položke **f** 50. Pri rezistore bude do **RES** zapísaná hodnota 1000 (pri rezistore R_1), 2000 (pri rezistore R_2), 3000 (pri rezistore R_3) a 4000 (pri rezistore R_4) (obr. 3).

Na modeli prvku cievky bude do kolónky L zadaná hodnota 1041 (predvolené nastavenie je v mH (mili henry), nie v henry). Na modeli prvku kondenzátora bude do kolónky C zadaná hodnota 124 (predvolené nastavenie je v μ F (mikro farad), nie vo faradoch) (obr.4).

Ostatné hodnoty je možné ponechať nezmenené. Bližšie vysvetlenie ich významu sa zobrazí po stlačení tlačidla "**help**" v aktuálnom okne prvku. Podrobnejší návod je obsiahnutý v literatúre Rule Book k programu EMTP-ATP.

Component: AC1PH.SUP	Component: RESISTOR.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME Amp. 100 1	DATA VALUE RES 1000 NODE PHASE NAME From 1 To 1
Order: 0 Labet: U	Order: 0 Labet: R1
Comment	Comment
Type of source Hige	Output Output Output U-No SVintage,1
40- <u>DK</u> <u>Cancel Help</u>	

Obr. 3 Nastavenie parametrov pre napäťový zdroj U a rezistora R_1

Component: IND_RP.SUP	Component: CAP_R5.SUP
Attributes	Attributes
DATA VALUE NODE PHASE NAME L 1041 From 1 To To	DATA VALUE NODE PHASE NAME C 124 From 1 Ks 0 To 1
Order. 0 Labet L	Order: 0 Labet C
Comment:	Comment
Output □ Hige □ No □ Look □ \$Vintage,1	Output Image: Hige 0 - No Image: Look SVintage: 1
QKHelp	QK Cancel Help

Obr. 4 Nastavenie parametrov cievky L a kondenzátora C

Obr. 5 Nastavenie parametrov voltmetra

Aby bolo možné ľahšie odčítať hodnoty z grafického postprocesora PlotXY, je potrebné pomenovať významné uzly v schéme. Stlačením pravého tlačidla myšky pri uzle sa zobrazí menu uzla, kde v kolónke **To:** sa zadá názov uzla veľkými písmenami, napr. UZOLA1 a UZOLA2 (obr. 6a). Podobne nastavíme názov uzla v prípade b) na UZOLB1 a UZOLB2 (obr. 6b). Po stlačení tlačidla **OK** bude farba pomenovaného uzla čierna.

Obr. 6 Nastavenie parametrov uzlov

Pre simuláciu prechodného deja sa musia nastaviť podmienky simulácie voľbou **ATP Settings** a záložka **Simulation** (obr. 7). Maximálny počet krokov výpočtu je obmedzený na 1 milión, preto je potrebné prispôsobiť tomuto obmedzeniu aj čas výpočtu a najmenší krok výpočtu. Zadá sa krok výpočtu napr. **delta T** 1E–7 s a doba výpočtu **T max** 0.04 s (pre určenie fázového posunu napätia alebo prúdu postačuje aj 1 perióda, t.j. 20 ms) (obr.8).

Obr. 7 ATP – Settings

Obr. 8 Dialógové okno Settings – Simulation

Pričom pre voliteľné hodnoty <u>X</u>opt a <u>C</u>opt platí:

Pre <u>X</u>opt:

- hodnota induktora bude charakterizovaná indukčnosťou (mH), pokiaľ bude \underline{X} opt = 0,
- hodnota induktora bude charakterizovaná reaktanciou (Ω), pokiaľ bude <u>X</u>opt = sieťovej frekvencii.

Pre <u>C</u>opt:

- hodnota kapacitora bude charakterizovaná kapacitou (μ F), pokiaľ bude Copt = 0,
- hodnota kapacitora bude charakterizovaná susceptanciou (μS), pokiaľ bude Copt = sieťovej frekvencii.

Takto vytvorená schéma sa uloží príkazom CTRL-S so zvoleným názvom, napr. priklad9. Vznikne súbor s príponou *.adp, ktorý sa nachádza v podadresári **Project** preprocesora ATPDraw. Je vhodné, používať názvy súborov bez diakritiky, zakázané je používať v názve súboru medzery a je dobré obmedziť dĺžku názvu súboru na max. 8 znakov.

Príkazom **Make File As...** v hornom menu **ATP** sa vytvorí v podadresári ATP dátový súbor pre ATP s rovnakým názvom s príponou *.atp (t.j. priklad9.atp) (obr. 9). Príkazom **run ATP** v hornom menu **ATP** sa spustí výpočet v programe ATP, ktorého výsledkom sú súbory s príponou *.lis a *.pl4 (obr. 10). Súbor *.lis je výstupný dátový súbor a rovnako ako súbor *.atp dajú sa prezerať z prostredia ATPDraw voľbou **ATP Edit**. Súbory s príponou *.pl4 sú komprimované grafické dáta, ktoré je možné prezerať niektorým z grafických postprocesorov, ako napríklad PlotXY. V prostredí ATPDraw sa voľbou **run PlotXY** z horného menu **ATP** spustí grafický postprocesor (obr. 11).

V grafickom postprocesore je s označením v: UZOLA1 – UZOLA2 uvedený požadovaný priebeh napätia $u_{2,a}$ (t.j. napätie medzi uzlom UZOLA1 a UZOLA2) v: UZOLB1 – UZOLB2 priebeh napätia $u_{2,b}$ (t.j. napätie medzi uzlom UZOLB1 a UZOLB2). Stlačením ľavého tlačidla myši sa dané priebehy označia pre zobrazenie a stlačením tlačidla **Plot** sa následne zobrazia. *Poznámka:* čísla uzlov môžu byť odlišné, v závislosti od zapojenia obvodu a nemusia korešpondovať s týmto číslovaním.

MC's PlotXY - Data select	ion					
Load Refresh]			1		?
# File Name	# of var	# of Point	Tmax			
priklad9.pl4	3	400001	0,04			
Variables	Θ	8	Res	et		H
t	Variabl	e		Х	Facto	Offset
v:UZOLA1-UZOLA2 v:UZOLB1-UZOLB2	t			x	1	0
	v: UZO	LA1-UZO	LA2		1	0
	v: U20	v:UZOLB1-UZOLB2			1	0
	Upda	te 📑	Fol	Ir	P	lot

Obr. 12 Dialógové okno podprogramu PlotXY pre vykreslenie priebehov

Aby sa jednotlivé priebehy neprekrývali, najprv zobrazíme a odčítame hodnoty napätia medzi uzlom UZOLA1 a UZOLA2 (obr. 13).

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime (obr. 14). Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti.

Obr. 14 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 15) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

			Mark Copy Print
Ol	or. 15 Tlačidlo	o Manual Sca	le
ba	MC ¹ c DioFYV Manual Cealing		1
	Y-Axis	Right-Y Axis	
	Max 1,5	Max inactive	
	Min -1,5	Min inactive	
r'	<-Axis		
	Min J0	Max 0,04	
	🗷 Exact	Match	
	Cancel	OK	

Obr. 16 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 18 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 1,283 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať rôznymi spôsobmi.

Jednou z metód výpočtu fázového natočenia je z času dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 18 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{6,5438 \cdot 10^{-3} - \frac{0,02}{4}}{0,02} \cdot 360^{\circ} \cong 332,21^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{f}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka začiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 17) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 19 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 14).

Obr. 20 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 17) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 1,5441.10^{-3}$ s a amplitúda – červenou farbou; $u_2 = -8,3593.10^{-6}$ V).

Obr. 21 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{1,5441 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} = 332,21^{\circ}$$

Z obidvoch metód určenia fázového natočenia je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLA1 a UZOLA2 je: $u_{2,a} = 1,283 \cdot e^{j332,2^{\circ}}$ V

Podobne sa postupuje v prípade b).

Zobrazenie a odčítanie hodnôt napätia medzi uzlom UZOLB a zemou sa uskutoční z obr. 22.

*Obr. 22 Zobrazenie priebehu napätia u*_{2,b)}

Pre odčítanie maximálnej hodnoty napätia postačuje odčítať hodnotu vrcholovej hodnoty pri ľubovoľnom maxime. Pre zvýšenie presnosti odčítania je potrebné vykonať dostatočný počet zväčšení danej oblasti (obr. 23).

Obr. 23 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Pre presné vymedzenie hraníc zobrazenia daného priebehu je možné využiť v spodnom menu tlačidiel okna PlotXY tlačidlo Manual Scale (tretie zľava) (obr. 24) a následne v okne Manual Scaling zadať minimálne a maximálne hranice *x*-ovej a *y*-ovej osi pre zobrazenie priebehov.

	Mark Copy Print
Obr. 24 Tlačidlo I	Manual Scale

🙀 MC's PlotXY - Manual Scaling	
Y-Axis	Right-Y Axis
Max 12	Max inactive
Min -12	Min inactive
X-Axis	
Min 0	Max 0,04
	Match
Cancel	OK

Obr. 25 Okno Manual Scaling

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

Obr. 27 Miesto odčítania maximálnej hodnoty

Z tohto priebehu je vidieť, že maximálna hodnota napätia je 11,064 V. Čo sa týka fázového natočenia φ , tak je možné ho vypočítať podobne ako v prípade a).

Jednou z metód výpočtu fázového natočenia je *z času* dosiahnutia *prvého maxima sínusovky* daného priebehu. Odčítaním z obr. 27 by tento výpočet mal nasledovný zápis:

$$\varphi = 360^{\circ} \cdot n - \frac{t - \frac{T}{4}}{T} \cdot 360^{\circ} = 360^{\circ} \cdot 1 - \frac{0.013712 - \frac{0.02}{4}}{0.02} \cdot 360^{\circ} \cong 203.18^{\circ}$$

Kde φ je fázové natočenie, *n* je poradie periódy, *t* čas dosiahnutia prvého maxima sínusovky, *T* perióda $T = \frac{1}{t}$.

Ďalšou z metód určenia fázového natočenia φ , je z času priesečníka počiatku sínusovky s osou x. Predtým je ale vhodné, pre rýchlejšie odčítanie hodnôt, nastaviť raster nasledovne. V dolnom menu okna PlotXY sa po stlačení tlačidla **Customize plot** (druhé zľava na obr. 26) vyvolá nové okno **Plot options**, kde sa odškrtne nastavenie mriežky v položke **Display Grid** a následne sa potvrdí tlačidlom **OK**.

Obr. 28 Nastavenie mriežky v okne Plot Options a Miesta odčítania času prechodu priebehu napätia nulou

Oblasť v okolí *prechodu počiatku sínusovky nulou* dostatočne zväčšíme podobne, ako to bolo v predchádzajúcom prípade (obr. 23).

Obr. 29 Postupné vyznačenie oblastí kurzorom myšky pre zväčšenie

Nasledovným postupom vykonáme trasovanie po priebehu. V spodnom menu tlačidiel okna PlotXY stlačíme tlačidlo Show Cursor (štvrté zľava) (obr. 26) a následne posúvame kurzorom (zvislou) čiarou pre zobrazenie hodnôt v požadovanom čase a amplitúde.

V dolnom menu okna PlotXY sú zobrazené hodnoty v mieste, kde sa nachádza trasovací kurzor (čas – čiernou farbou; $t = 8,712.10^{-3}$ s a amplitúda – červenou farbou; $u_2 = 9,2684.10^{-5}$ V).

Obr. 30 Odčítanie času prechodu sínusovky nulou

Z času prechodu počiatku sínusovky nulou je možné vyčísliť fázové natočenie podľa vzťahu:

$$\varphi = 360^{\circ} \cdot n - \frac{t}{T} \cdot 360^{\circ} = 360 \cdot 1 - \frac{8,712 \cdot 10^{-3}}{0,02} \cdot 360^{\circ} \cong 203,18$$

Z obidvoch výrazov je vidieť dostatočnú zhodu φ .

Výsledný zápis napätia medzi uzlom UZOLB1 a UZOLB2 je: $u_{2,b} = 11,064 \cdot e^{j203,2^{\circ}}$ V.

Výsledky:

a) $u_{2,a} = 1,283 \cdot e^{j332,2^{\circ}}$ V

b) $u_{2,b} = 11,064 \cdot e^{j203,2^{\circ}}$ V